These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34999289)
1. Spatial frequency impacts perceptual and attentional ERP components across cultures. Lin T; Zhang X; Fields EC; Sekuler R; Gutchess A Brain Cogn; 2022 Mar; 157():105834. PubMed ID: 34999289 [TBL] [Abstract][Full Text] [Related]
2. Attention modulates early visual processing: An association between subjective contrast perception and early C1 ERP component. Pan WN; Zhao YW; Luo ZX; Chen Y; Cai YC Psychophysiology; 2024 May; 61(5):e14507. PubMed ID: 38146152 [TBL] [Abstract][Full Text] [Related]
3. Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study. Föcker J; Mortazavi M; Khoe W; Hillyard SA; Bavelier D J Cogn Neurosci; 2019 Mar; 31(3):377-389. PubMed ID: 29308981 [TBL] [Abstract][Full Text] [Related]
4. Is that a belt or a snake? Object attentional selection affects the early stages of visual sensory processing. Zani A; Proverbio AM Behav Brain Funct; 2012 Feb; 8():6. PubMed ID: 22300540 [TBL] [Abstract][Full Text] [Related]
5. Luminance and spatial attention effects on early visual processing. Johannes S; Münte TF; Heinze HJ; Mangun GR Brain Res Cogn Brain Res; 1995 Jul; 2(3):189-205. PubMed ID: 7580401 [TBL] [Abstract][Full Text] [Related]
6. Electrophysiological evidence of sustained spatial attention effects over anterior cortex: Possible contribution of the anterior insula. Berchicci M; Ten Brink AF; Quinzi F; Perri RL; Spinelli D; Di Russo F Psychophysiology; 2019 Jul; 56(7):e13369. PubMed ID: 30927459 [TBL] [Abstract][Full Text] [Related]
7. Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention. Müller MM; Hillyard S Clin Neurophysiol; 2000 Sep; 111(9):1544-52. PubMed ID: 10964063 [TBL] [Abstract][Full Text] [Related]
8. Selective attention to spatial frequency: an ERP and source localization analysis. Baas JM; Kenemans JL; Mangun GR Clin Neurophysiol; 2002 Nov; 113(11):1840-54. PubMed ID: 12417240 [TBL] [Abstract][Full Text] [Related]
9. Isolating event-related potential components associated with voluntary control of visuo-spatial attention. McDonald JJ; Green JJ Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037 [TBL] [Abstract][Full Text] [Related]
10. The experimental parameters that affect attentional modulation of the ERP C1 component. Slotnick SD Cogn Neurosci; 2018; 9(1-2):53-62. PubMed ID: 28826303 [TBL] [Abstract][Full Text] [Related]
11. Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task. Seiss E; Driver J; Eimer M Clin Neurophysiol; 2009 Jun; 120(6):1087-95. PubMed ID: 19410504 [TBL] [Abstract][Full Text] [Related]
12. An ERP study of visual change detection: effects of magnitude of spatial frequency changes on the change-related posterior positivity. Kimura M; Katayama J; Murohashi H Int J Psychophysiol; 2006 Oct; 62(1):14-23. PubMed ID: 16439032 [TBL] [Abstract][Full Text] [Related]
13. Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise. Smout CA; Mattingley JB J Cogn Neurosci; 2018 Aug; 30(8):1119-1129. PubMed ID: 29791299 [TBL] [Abstract][Full Text] [Related]
14. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Chen Y; Huang X; Luo Y; Peng C; Liu C Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647 [TBL] [Abstract][Full Text] [Related]
15. ERP effects of spatial attention and display search with unilateral and bilateral stimulus displays. Lange JJ; Wijers AA; Mulder LJ; Mulder G Biol Psychol; 1999 Jul; 50(3):203-33. PubMed ID: 10461806 [TBL] [Abstract][Full Text] [Related]
16. Functionally independent components of early event-related potentials in a visual spatial attention task. Makeig S; Westerfield M; Townsend J; Jung TP; Courchesne E; Sejnowski TJ Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1135-44. PubMed ID: 10466141 [TBL] [Abstract][Full Text] [Related]
17. Neural plasticity underlying visual perceptual learning in aging. Mishra J; Rolle C; Gazzaley A Brain Res; 2015 Jul; 1612():140-51. PubMed ID: 25218557 [TBL] [Abstract][Full Text] [Related]
18. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex. Müller MM; Gundlach C Psychophysiology; 2017 Mar; 54(3):429-443. PubMed ID: 27990660 [TBL] [Abstract][Full Text] [Related]
19. Can illusory deviant stimuli be used as attentional distractors to record vMMN in a passive three stimulus oddball paradigm? Flynn M; Liasis A; Gardner M; Boyd S; Towell T Exp Brain Res; 2009 Aug; 197(2):153-61. PubMed ID: 19551375 [TBL] [Abstract][Full Text] [Related]
20. Attentional gain is modulated by probabilistic feature expectations in a spatial cueing task: ERP evidence. Marzecová A; Schettino A; Widmann A; SanMiguel I; Kotz SA; Schröger E Sci Rep; 2018 Jan; 8(1):54. PubMed ID: 29311603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]