These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34999337)

  • 41. Free Faecal Water: Analysis of Horse Faecal Microbiota and the Impact of Faecal Microbial Transplantation on Symptom Severity.
    Laustsen L; Edwards JE; Hermes GDA; Lúthersson N; van Doorn DA; Okrathok S; Kujawa TJ; Smidt H
    Animals (Basel); 2021 Sep; 11(10):. PubMed ID: 34679798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet.
    Morrison PK; Newbold CJ; Jones E; Worgan HJ; Grove-White DH; Dugdale AH; Barfoot C; Harris PA; Argo CM
    PLoS One; 2020; 15(5):e0232689. PubMed ID: 32384105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of the faecal microbiota in foals.
    Costa MC; Stämpfli HR; Allen-Vercoe E; Weese JS
    Equine Vet J; 2016 Nov; 48(6):681-688. PubMed ID: 26518456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of hay intake and feeding sequence on variables in faeces and faecal water (dry matter, pH value, organic acids, ammonia, buffering capacity) of horses.
    Zeyner A; Geissler C; Dittrich A
    J Anim Physiol Anim Nutr (Berl); 2004 Feb; 88(1-2):7-19. PubMed ID: 19774758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies.
    Almeida ML; Feringer WH; Carvalho JR; Rodrigues IM; Jordão LR; Fonseca MG; Carneiro de Rezende AS; de Queiroz Neto A; Weese JS; Costa MC; Lemos EG; Ferraz GC
    PLoS One; 2016; 11(12):e0167108. PubMed ID: 27935992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative fibre-degrading capacity in foals at immediate and late post-weaning periods.
    Faubladier C; Julliand V; Beuneiche L; Philippeau C
    Animal; 2017 Sep; 11(9):1497-1504. PubMed ID: 28219467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress.
    Wilms E; An R; Smolinska A; Stevens Y; Weseler AR; Elizalde M; Drittij MJ; Ioannou A; van Schooten FJ; Smidt H; Masclee AAM; Zoetendal EG; Jonkers DMAE
    Clin Nutr; 2021 May; 40(5):3019-3031. PubMed ID: 33509667
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet.
    Janczyk P; Büsing K; Dobenecker B; Nöckler K; Zeyner A
    J Anim Physiol Anim Nutr (Berl); 2015 Apr; 99 Suppl S1():13-22. PubMed ID: 25865418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses.
    Walshe N; Duggan V; Cabrera-Rubio R; Crispie F; Cotter P; Feehan O; Mulcahy G
    Int J Parasitol; 2019 May; 49(6):489-500. PubMed ID: 30986403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of short-term dietary starch inclusion on the equine cecal microbiome.
    Warzecha CM; Coverdale JA; Janecka JE; Leatherwood JL; Pinchak WE; Wickersham TA; McCann JC
    J Anim Sci; 2017 Nov; 95(11):5077-5090. PubMed ID: 29293739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training.
    Willing B; Vörös A; Roos S; Jones C; Jansson A; Lindberg JE
    Equine Vet J; 2009 Dec; 41(9):908-14. PubMed ID: 20383990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of body weight gain on insulin and lipid metabolism in equines.
    Blaue D; Schedlbauer C; Starzonek J; Gittel C; Brehm W; Einspanier A; Vervuert I
    Domest Anim Endocrinol; 2019 Jul; 68():111-118. PubMed ID: 31035090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of steam-flaked grains on foals' growth and faecal microbiota.
    Li XB; Huang XX; Zang CJ; Ma C; Chen KX; Zhao GD; Li Q; Li XY; Zhang WJ; Yang KL
    BMC Vet Res; 2021 Sep; 17(1):293. PubMed ID: 34481494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of feeding polydextrose on faecal characteristics, microbiota and fermentative end products in healthy adult dogs.
    Beloshapka AN; Wolff AK; Swanson KS
    Br J Nutr; 2012 Aug; 108(4):638-44. PubMed ID: 22085650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro.
    Shen Q; Zhao L; Tuohy KM
    Eur J Nutr; 2012 Sep; 51(6):693-705. PubMed ID: 21952691
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves.
    Chang MN; Wei JY; Hao LY; Ma FT; Li HY; Zhao SG; Sun P
    J Dairy Sci; 2020 Jul; 103(7):6100-6113. PubMed ID: 32307167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in the faecal microbiota of mares precede the development of post partum colic.
    Weese JS; Holcombe SJ; Embertson RM; Kurtz KA; Roessner HA; Jalali M; Wismer SE
    Equine Vet J; 2015 Nov; 47(6):641-9. PubMed ID: 25257320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene.
    Costa MC; Arroyo LG; Allen-Vercoe E; Stämpfli HR; Kim PT; Sturgeon A; Weese JS
    PLoS One; 2012; 7(7):e41484. PubMed ID: 22859989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of methodological aspects of digestibility measurements in ponies fed different haylage to concentrate ratios.
    Schaafstra FJWC; van Doorn DA; Schonewille JT; van Riet MMJ; Visser P; Blok MC; Hendriks WH
    Animal; 2017 Nov; 11(11):1922-1929. PubMed ID: 28412989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs.
    Hollis GR; Carter SD; Cline TR; Crenshaw TD; Cromwell GL; Hill GM; Kim SW; Lewis AJ; Mahan DC; Miller PS; Stein HH; Veum TL;
    J Anim Sci; 2005 Sep; 83(9):2123-9. PubMed ID: 16100067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.