These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 34999410)
1. Looking for low vision: Predicting visual prognosis by fusing structured and free-text data from electronic health records. Gui H; Tseng B; Hu W; Wang SY Int J Med Inform; 2022 Mar; 159():104678. PubMed ID: 34999410 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing. Wang SY; Tseng B; Hernandez-Boussard T Ophthalmol Sci; 2022 Jun; 2(2):100127. PubMed ID: 36249690 [TBL] [Abstract][Full Text] [Related]
3. Development and evaluation of novel ophthalmology domain-specific neural word embeddings to predict visual prognosis. Wang S; Tseng B; Hernandez-Boussard T Int J Med Inform; 2021 Jun; 150():104464. PubMed ID: 33892445 [TBL] [Abstract][Full Text] [Related]
4. Predicting near-term glaucoma progression: An artificial intelligence approach using clinical free-text notes and data from electronic health records. Jalamangala Shivananjaiah SK; Kumari S; Majid I; Wang SY Front Med (Lausanne); 2023; 10():1157016. PubMed ID: 37122330 [TBL] [Abstract][Full Text] [Related]
5. Automated Recognition of Visual Acuity Measurements in Ophthalmology Clinical Notes Using Deep Learning. Bernstein IA; Koornwinder A; Hwang HH; Wang SY Ophthalmol Sci; 2024; 4(2):100371. PubMed ID: 37868799 [TBL] [Abstract][Full Text] [Related]
6. Predicting Glaucoma Progression Requiring Surgery Using Clinical Free-Text Notes and Transfer Learning With Transformers. Hu W; Wang SY Transl Vis Sci Technol; 2022 Mar; 11(3):37. PubMed ID: 35353148 [TBL] [Abstract][Full Text] [Related]
7. Leveraging weak supervision to perform named entity recognition in electronic health records progress notes to identify the ophthalmology exam. Wang SY; Huang J; Hwang H; Hu W; Tao S; Hernandez-Boussard T Int J Med Inform; 2022 Nov; 167():104864. PubMed ID: 36179600 [TBL] [Abstract][Full Text] [Related]
8. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
10. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
11. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
12. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related]
13. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models. Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650 [TBL] [Abstract][Full Text] [Related]
14. Automated extraction of ophthalmic surgery outcomes from the electronic health record. Wang SY; Pershing S; Tran E; Hernandez-Boussard T Int J Med Inform; 2020 Jan; 133():104007. PubMed ID: 31706228 [TBL] [Abstract][Full Text] [Related]
15. Artificial Intelligence-Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study. Chen W; Lu Z; You L; Zhou L; Xu J; Chen K JMIR Med Inform; 2020 Jun; 8(6):e18186. PubMed ID: 32538798 [TBL] [Abstract][Full Text] [Related]
16. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524 [TBL] [Abstract][Full Text] [Related]
17. Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes. Ye J; Yao L; Shen J; Janarthanam R; Luo Y BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):295. PubMed ID: 33380338 [TBL] [Abstract][Full Text] [Related]
18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
19. EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records. Wang G; Lou X; Guo F; Kwok D; Cao C IEEE J Biomed Health Inform; 2024 Mar; 28(3):1668-1679. PubMed ID: 38133976 [TBL] [Abstract][Full Text] [Related]
20. Fall Risk Prediction in Older Adults Using Free-Text Nursing Notes and Medications in Electronic Health Records. Mishra AK; Chappell MJ; Emerson S; Skubic M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]