These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34999458)

  • 1. Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods.
    Chen M; Zhou H; Huang C; Liu P; Fei J; Ou J; Ou S; Zheng J
    Food Chem; 2022 May; 377():132008. PubMed ID: 34999458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and metabolism of 6-(1-acetol)-8-(1-acetol)-rutin in foods and
    Chen M; Liu P; Zhou H; Huang C; Zhai W; Xiao Y; Ou J; He J; El-Nezami H; Zheng J
    Front Nutr; 2022; 9():973048. PubMed ID: 35983484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Hesperetin-Methylglyoxal Adducts in Food and
    Zhang M; Ge T; Huang W; He J; Huang C; Ou J; Ou S; Zheng J
    J Agric Food Chem; 2024 May; 72(19):11174-11184. PubMed ID: 38687489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells.
    Liu P; Yin Z; Chen M; Huang C; Wu Z; Huang J; Ou S; Zheng J
    Food Chem; 2021 Aug; 352():129424. PubMed ID: 33706136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping Methylglyoxal by Myricetin and Its Metabolites in Mice.
    Zhang S; Xiao L; Lv L; Sang S
    J Agric Food Chem; 2020 Sep; 68(35):9408-9414. PubMed ID: 32786863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary Quercetin Reduces Plasma and Tissue Methylglyoxal and Advanced Glycation End Products in Healthy Mice Treated with Methylglyoxal.
    Zhao Y; Tang Y; Sang S
    J Nutr; 2021 Sep; 151(9):2601-2609. PubMed ID: 34091674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species.
    Bhuiyan MN; Mitsuhashi S; Sigetomi K; Ubukata M
    Biosci Biotechnol Biochem; 2017 May; 81(5):882-890. PubMed ID: 28388357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels and formation of α-dicarbonyl compounds in beverages and the preventive effects of flavonoids.
    Wang C; Lu Y; Huang Q; Zheng T; Sang S; Lv L
    J Food Sci Technol; 2017 Jun; 54(7):2030-2040. PubMed ID: 28720960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping Methylglyoxal by Genistein and Its Metabolites in Mice.
    Wang P; Chen H; Sang S
    Chem Res Toxicol; 2016 Mar; 29(3):406-14. PubMed ID: 26881724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Screening for active components of Sophorae Flos on inhibiting AGEs formation based on non-enzymatic glycation reaction].
    Jiang N; Wang FJ; Feng L; Jia XB
    Zhongguo Zhong Yao Za Zhi; 2019 Jul; 44(14):3100-3106. PubMed ID: 31602859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species.
    Shao X; Bai N; He K; Ho CT; Yang CS; Sang S
    Chem Res Toxicol; 2008 Oct; 21(10):2042-50. PubMed ID: 18774823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping Methylglyoxal by Taxifolin and Its Metabolites in Mice.
    Zhang Y; Zhan L; Wen Q; Feng Y; Luo Y; Tan T
    J Agric Food Chem; 2022 Apr; 70(16):5026-5038. PubMed ID: 35420027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major anthocyanins in elderberry effectively trap methylglyoxal and reduce cytotoxicity of methylglyoxal in HepG2 cell line.
    Ferreira SS; Domingues MR; Barros C; Santos SAO; Silvestre AJD; Silva AM; Nunes FM
    Food Chem X; 2022 Dec; 16():100468. PubMed ID: 36281231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin, but Not Epicatechin, Decreases Plasma Concentrations of Methylglyoxal in Adults in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial with Pure Flavonoids.
    Van den Eynde MDG; Geleijnse JM; Scheijen JLJM; Hanssen NMJ; Dower JI; Afman LA; Stehouwer CDA; Hollman PCH; Schalkwijk CG
    J Nutr; 2018 Dec; 148(12):1911-1916. PubMed ID: 30398646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scavenging Glyoxal and Methylglyoxal by Synephrine and Neohesperidin from Flowers of
    Liang Y; Zhao X; Xu Y; Lu Y; Lv L
    J Agric Food Chem; 2024 Apr; 72(14):8027-8038. PubMed ID: 38529939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.