These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 350001)

  • 41. A comparison of allogeneic and autogenous iliac monocortical grafts to augment the deficient alveolar ridge in a canine model. I. Clinical study.
    Cranin AN; Demirdjan E; DiGregorio R
    J Oral Implantol; 2003; 29(3):124-31. PubMed ID: 12837052
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone grafts: a review of the literature.
    Glidear J
    J Foot Surg; 1977; 16(4):146-8. PubMed ID: 346637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Process of vascularization and regeneration of bone after transplantation of free and unfree bone autotransplants].
    Plodnik IN
    Ortop Travmatol Protez; 1970 Oct; 31(9):10-5. PubMed ID: 4929715
    [No Abstract]   [Full Text] [Related]  

  • 44. Nicotine on the revascularization of bone graft. An experimental study in rabbits.
    Daftari TK; Whitesides TE; Heller JG; Goodrich AC; McCarey BE; Hutton WC
    Spine (Phila Pa 1976); 1994 Apr; 19(8):904-11. PubMed ID: 7516583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential of autogenous or fresh-frozen allogeneic bone block grafts for bone remodelling: a histological, histometrical, and immunohistochemical analysis in rabbits.
    Garbin Junior EA; de Lima VN; Momesso GAC; Mello-Neto JM; Érnica NM; Magro Filho O
    Br J Oral Maxillofac Surg; 2017 Jul; 55(6):589-593. PubMed ID: 28404212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The fate of pedicle osteocutaneous grafts in mandibulo-facial restoration.
    Canalis RF; Saffouri M; Mirra J; Ward PH
    Laryngoscope; 1977 Jun; 87(6):895-908. PubMed ID: 405540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs.
    Stevenson S; Li XQ; Martin B
    J Bone Joint Surg Am; 1991 Sep; 73(8):1143-56. PubMed ID: 1890116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revascularization and new bone formation in heat-treated bone grafts.
    Shimizu K; Masumi S; Yano H; Fukunaga T; Ikebe S; Shin S
    Arch Orthop Trauma Surg; 1999; 119(1-2):57-61. PubMed ID: 10076946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Bone grafts (editorial)].
    Płomiński J; Kwiatkowski K
    Pol Merkur Lekarski; 2006 Dec; 21(126):507-10. PubMed ID: 17405286
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteogenicity of autologous bone transplants in the goat.
    Kruyt MC; Dhert WJ; Oner C; van Blitterswijk CA; Verbout AJ; de Bruijn JD
    Transplantation; 2004 Feb; 77(4):504-9. PubMed ID: 15084925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The comparative analysis of homologous fresh frozen bone and autogenous bone graft, associated or not with autogenous bone marrow, in rabbit calvaria: a clinical and histomorphometric study.
    Pelegrine AA; Sorgi da Costa CE; Sendyk WR; Gromatzky A
    Cell Tissue Bank; 2011 Aug; 12(3):171-84. PubMed ID: 20473718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study.
    Borie E; Fuentes R; Del Sol M; Oporto G; Engelke W
    Ann Anat; 2011 Oct; 193(5):412-7. PubMed ID: 21802915
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analysis of revascularisation and new bone formation in experimental bone grafts. The use of an image input and processing system.
    Yano H; Masumi S; Fukunaga T; Ikebe S
    Int Orthop; 1993; 17(2):109-12. PubMed ID: 8500929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Experimental studies on bone grafts].
    Zhang GP; Wang GS; Chen ML; Wang DX; Xian QW
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1981 Jun; 3 Suppl 1():1-4. PubMed ID: 6459870
    [No Abstract]   [Full Text] [Related]  

  • 55. A simplified technique for the evaluation of circulation in experimental osseous grafts.
    Petri WH; Halverson BA; Triplett RG
    J Dent Res; 1983 Jun; 62(6):752-5. PubMed ID: 6343441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of infection and lag screw fixation on revascularization and new bone deposition in membranous bone grafts in a rabbit model.
    Fialkov JA; Phillips JH; Walmsley SL; Morava-Protzner I
    Plast Reconstr Surg; 1996 Aug; 98(2):338-45. PubMed ID: 8764724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [PECULARITIES OF THE PROCESS OF ACCRETION OF BONES TRANSPLANTED AS FREE GRAFTS AND ON MUSCULAR PEDICLES].
    FISHKIN VI; GLADKOVA AM; MELNICHUK AV
    Ortop Travmatol Protez; 1964 Apr; 25():22-4. PubMed ID: 14203548
    [No Abstract]   [Full Text] [Related]  

  • 58. Behavior of cortical bone grafts under different types of fixation.
    Kroon FH; Perren SM; van den Hoof A
    Int J Oral Surg; 1977 Jun; 6(3):131-40. PubMed ID: 408281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts.
    Bolander ME; Balian G
    J Bone Joint Surg Am; 1986 Oct; 68(8):1264-74. PubMed ID: 3533947
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The correlation of bone mineral density and histologic data in the early grafted maxillary sinus: a preliminary report.
    Lee CY; Prasad HS; Suzuki JB; Stover JD; Rohrer MD
    Implant Dent; 2011 Jun; 20(3):202-14. PubMed ID: 21613947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.