These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35000122)

  • 1. Upstream Activation Sequence Can Function as an Insulator for Chromosomal Regulation of Heterologous Pathways Against Position Effects in Saccharomyces cerevisiae.
    Su B; Yang F; Li A; Deng MR; Zhu H
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1841-1849. PubMed ID: 35000122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J; Park SH; Kim S; Kim SW; Hahn JS
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B; Song D; Yang F; Zhu H
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):383-393. PubMed ID: 32236768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae.
    Huang G; Li J; Lin J; Duan C; Yan G
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Terminator-Promoter Bifunctional Elements for Application in
    Ni X; Liu Z; Guo J; Zhang G
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production.
    Xu X; Liu J; Lu Y; Lan H; Tian L; Zhang Z; Xie C; Jiang L
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1033-1047. PubMed ID: 33486569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global rewiring of lipid metabolism to produce carotenoid by deleting the transcription factor genes ino2/ino4 in Saccharomyces cerevisiae.
    Su B; Lai P; Deng MR; Zhu H
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130400. PubMed ID: 38412934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in
    Zhou K; Yu C; Liang N; Xiao W; Wang Y; Yao M; Yuan Y
    J Agric Food Chem; 2023 Mar; 71(8):3821-3831. PubMed ID: 36802623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae.
    Peng B; Esquirol L; Lu Z; Shen Q; Cheah LC; Howard CB; Scott C; Trau M; Dumsday G; Vickers CE
    Nat Commun; 2022 May; 13(1):2895. PubMed ID: 35610221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae.
    Zhao X; Shi F; Zhan W
    Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae].
    Sun L; Wang J; Jiang W; Li Y; Zhang L; Ding Z; Gu Z; Shi G; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1334-1345. PubMed ID: 32748591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae].
    Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a Balanced Acetyl Coenzyme A Metabolism in
    Su B; Lai P; Yang F; Li A; Deng MR; Zhu H
    J Agric Food Chem; 2022 Apr; 70(13):4019-4029. PubMed ID: 35319878
    [No Abstract]   [Full Text] [Related]  

  • 20. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis.
    Bian Q; Jiao X; Chen Y; Yu H; Ye L
    Biotechnol Bioeng; 2023 Feb; 120(2):536-552. PubMed ID: 36369967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.