These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 35001622)
1. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622 [TBL] [Abstract][Full Text] [Related]
2. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003 [TBL] [Abstract][Full Text] [Related]
3. Probing the surface charge of condensates using microelectrophoresis. van Haren MHI; Visser BS; Spruijt E Nat Commun; 2024 Apr; 15(1):3564. PubMed ID: 38670952 [TBL] [Abstract][Full Text] [Related]
4. The liquid-to-solid transition of FUS is promoted by the condensate surface. Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257 [TBL] [Abstract][Full Text] [Related]
6. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264 [TBL] [Abstract][Full Text] [Related]
7. Multidimensional Super-Resolution Microscopy Unveils Nanoscale Surface Aggregates in the Aging of FUS Condensates. He C; Wu CY; Li W; Xu K J Am Chem Soc; 2023 Nov; 145(44):24240-24248. PubMed ID: 37782826 [TBL] [Abstract][Full Text] [Related]
8. Higher-order organization of biomolecular condensates. Fare CM; Villani A; Drake LE; Shorter J Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784 [TBL] [Abstract][Full Text] [Related]
9. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. Scholl D; Deniz AA J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801 [TBL] [Abstract][Full Text] [Related]
10. Aging can transform single-component protein condensates into multiphase architectures. Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989 [TBL] [Abstract][Full Text] [Related]
11. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales. Polyansky AA; Gallego LD; Efremov RG; Köhler A; Zagrovic B Elife; 2023 Jul; 12():. PubMed ID: 37470705 [TBL] [Abstract][Full Text] [Related]
12. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations. Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953 [TBL] [Abstract][Full Text] [Related]
13. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells. Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Mukherjee S; Schäfer LV Nat Commun; 2023 Sep; 14(1):5892. PubMed ID: 37735186 [TBL] [Abstract][Full Text] [Related]
15. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657 [TBL] [Abstract][Full Text] [Related]
16. Multidimensional super-resolution microscopy unveils nanoscale surface aggregates in the aging of FUS condensates. He C; Wu CY; Li W; Xu K bioRxiv; 2023 Jul; ():. PubMed ID: 37503034 [TBL] [Abstract][Full Text] [Related]
17. Proximity to criticality predicts surface properties of biomolecular condensates. Pyo AGT; Zhang Y; Wingreen NS Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985 [TBL] [Abstract][Full Text] [Related]
18. DNA-Origami-Armored DNA Condensates. Yamashita N; Sato Y; Suzuki Y; Ishikawa D; Takinoue M Chembiochem; 2024 Oct; 25(20):e202400468. PubMed ID: 39075031 [TBL] [Abstract][Full Text] [Related]
19. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy. Alshareedah I; Banerjee PR Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474 [TBL] [Abstract][Full Text] [Related]
20. Cross-Talk of Cation-π Interactions with Electrostatic and Aromatic Interactions: A Salt-Dependent Trade-off in Biomolecular Condensates. Hazra MK; Levy Y J Phys Chem Lett; 2023 Sep; 14(38):8460-8469. PubMed ID: 37721444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]