BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 35001904)

  • 1. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection.
    Van Craenendonck T; Elen B; Gerrits N; De Boever P
    Transl Vis Sci Technol; 2020 Dec; 9(2):64. PubMed ID: 33403156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features.
    Harangi B; Toth J; Baran A; Hajdu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2699-2702. PubMed ID: 31946452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new intelligent system based deep learning to detect DME and AMD in OCT images.
    Gueddena Y; Aboudi N; Zgolli H; Mabrouk S; Sidibe D; Tabia H; Khlifa N
    Int Ophthalmol; 2024 Apr; 44(1):191. PubMed ID: 38653842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading.
    Sahlsten J; Jaskari J; Kivinen J; Turunen L; Jaanio E; Hietala K; Kaski K
    Sci Rep; 2019 Jul; 9(1):10750. PubMed ID: 31341220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images.
    Toğaçar M
    Comput Methods Programs Biomed; 2022 Feb; 214():106579. PubMed ID: 34896689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of microaneurysms in optical coherence tomography images of retina using convolutional neural networks and transfer learning.
    Almasi R; Vafaei A; Kazeminasab E; Rabbani H
    Sci Rep; 2022 Aug; 12(1):13975. PubMed ID: 35978087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing a Novel Layer in Convolutional Neural Network for Automatic Identification of Diabetic Retinopathy.
    Khojasteh P; Aliahmad B; Arjunan SP; Kumar DK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5938-5941. PubMed ID: 30441688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neovascularization Detection and Localization in Fundus Images Using Deep Learning.
    Tang MCS; Teoh SS; Ibrahim H; Embong Z
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Bayesian baseline for segmenting diabetic retinopathy lesions: Advances and challenges.
    Garifullin A; Lensu L; Uusitalo H
    Comput Biol Med; 2021 Sep; 136():104725. PubMed ID: 34399196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Diabetes through Retinal Images Using Deep Neural Network.
    Ragab M; Al-Ghamdi ASA; Fakieh B; Choudhry H; Mansour RF; Koundal D
    Comput Intell Neurosci; 2022; 2022():7887908. PubMed ID: 35694596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography.
    Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S
    Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease.
    Chaurasia BK; Raj H; Rathour SS; Singh PB
    Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.