These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35002205)

  • 21. Investigation of the protection efficacy of face shields against aerosol cough droplets.
    Ronen A; Rotter H; Elisha S; Sevilia S; Parizer B; Hafif N; Manor A
    J Occup Environ Hyg; 2021 Feb; 18(2):72-83. PubMed ID: 33315526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of co-flow on fluid dynamics of a cough jet with implications in spread of COVID-19.
    Behera S; Bhardwaj R; Agrawal A
    Phys Fluids (1994); 2021 Oct; 33(10):101701. PubMed ID: 34737529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Life of a droplet: Buoyant vortex dynamics drives the fate of micro-particle expiratory ejecta.
    Renzi E; Clarke A
    Phys Fluids (1994); 2020 Dec; 32(12):123301. PubMed ID: 33362400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minimising exposure to respiratory droplets, 'jet riders' and aerosols in air-conditioned hospital rooms by a 'Shield-and-Sink' strategy.
    Hunziker P
    BMJ Open; 2021 Oct; 11(10):e047772. PubMed ID: 34642190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review.
    Norvihoho LK; Yin J; Zhou ZF; Han J; Chen B; Fan LH; Lichtfouse E
    Environ Chem Lett; 2023; 21(3):1701-1727. PubMed ID: 36846189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of upper respiratory tract anatomy and head movement on the buoyant flow and particle dispersion generated in a violent expiratory event.
    Pallares J; Fabregat A; Cito S
    J Aerosol Sci; 2022 Nov; 166():106052. PubMed ID: 35935165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion of free-falling saliva droplets by two-dimensional vortical flows.
    Avni O; Dagan Y
    Theor Comput Fluid Dyn; 2022; 36(6):993-1011. PubMed ID: 36373071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical model for cough-generated droplet dispersion on moving escalator with multiple passengers.
    Takii A; Yamakawa M; Kitagawa A; Watamura T; Chung YM; Kim M
    Indoor Air; 2022 Nov; 32(11):e13131. PubMed ID: 36437661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On respiratory droplets and face masks.
    Dbouk T; Drikakis D
    Phys Fluids (1994); 2020 Jun; 32(6):063303. PubMed ID: 32574231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding lifetime and dispersion of cough-emitted droplets in air.
    Lordly K; Kober L; Jadidi M; Antoun S; Dworkin SB; Karataş AE
    Indoor Built Environ; 2023 Dec; 32(10):1929-1948. PubMed ID: 38023440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimates of the stochasticity of droplet dispersion by a cough.
    Trivedi S; Gkantonas S; Mesquita LCC; Iavarone S; de Oliveira PM; Mastorakos E
    Phys Fluids (1994); 2021 Nov; 33(11):115130. PubMed ID: 35002201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation airflow patterns.
    Wan MP; Chao CY
    J Biomech Eng; 2007 Jun; 129(3):341-53. PubMed ID: 17536901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion.
    Patel SH; Yim W; Garg AK; Shah SH; Jokerst JV; Chao DL
    J Clin Med; 2020 Sep; 9(9):. PubMed ID: 32957639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A spatiotemporal assessment of occupants' infection risks in a multi-occupants space using modified Wells-Riley model.
    Yan Y; Li X; Fang X; Tao Y; Tu J
    Build Environ; 2023 Feb; 230():110007. PubMed ID: 36691649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission of pathogen-laden expiratory droplets in a coach bus.
    Yang X; Ou C; Yang H; Liu L; Song T; Kang M; Lin H; Hang J
    J Hazard Mater; 2020 Oct; 397():122609. PubMed ID: 32361671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and fate of human expiratory droplets-A modeling approach.
    Wang B; Wu H; Wan XF
    Phys Fluids (1994); 2020 Aug; 32(8):083307. PubMed ID: 32831538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trajectories of large respiratory droplets in indoor environment: A simplified approach.
    Cheng CH; Chow CL; Chow WK
    Build Environ; 2020 Oct; 183():107196. PubMed ID: 32836704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Person to person droplets transmission characteristics in unidirectional ventilated protective isolation room: The impact of initial droplet size.
    Yang C; Yang X; Zhao B
    Build Simul; 2016; 9(5):597-606. PubMed ID: 32218912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyzing the dominant SARS-CoV-2 transmission routes toward an
    Chaudhuri S; Basu S; Saha A
    Phys Fluids (1994); 2020 Dec; 32(12):123306. PubMed ID: 33311972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study.
    Feng Y; Marchal T; Sperry T; Yi H
    J Aerosol Sci; 2020 Sep; 147():105585. PubMed ID: 32427227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.