These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35002602)

  • 1. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes.
    Fu X; Li G; Niu Y; Xu J; Wang P; Zhou Z; Ye Z; Liu X; Xu Z; Yang Z; Zhang Y; Lei T; Zhang B; Li Q; Cao A; Jiang T; Duan X
    Front Neurosci; 2021; 15():771980. PubMed ID: 35002602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers.
    Lu L; Fu X; Liew Y; Zhang Y; Zhao S; Xu Z; Zhao J; Li D; Li Q; Stanley GB; Duan X
    Nano Lett; 2019 Mar; 19(3):1577-1586. PubMed ID: 30798604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 4. Free-Standing Carbon Nanotube Embroidered Graphene Film Electrode Array for Stable Neural Interfacing.
    Gao L; Lv S; Shang Y; Guan S; Tian H; Fang Y; Wang J; Li H
    Nano Lett; 2024 Jan; 24(3):829-835. PubMed ID: 38117186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Neural Interfacing based on Implantable Graphene Fiber Microelectrode Arrays.
    Alsadat Hejazi M; Seyedi SA; Mehdizadeh A
    J Biomed Phys Eng; 2023 Dec; 13(6):573-576. PubMed ID: 38148964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Based Electrode Materials for Neural Activity Detection.
    Wei W; Wang X
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nano-Structured Neural Probes Show Promise for Magnetic Resonance Imaging Applications.
    Cruttenden CE; Taylor JM; Hu S; Zhang Y; Zhu XH; Chen W; Rajamani R
    Biomed Phys Eng Express; 2017; 4(1):. PubMed ID: 29623217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.
    Alahi MEE; Rizu MI; Tina FW; Huang Z; Nag A; Afsarimanesh N
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Micro-Patterned Carbon Fiber Mats into Polyimide for the Development of Flexible Implantable Neural Devices.
    Gueli C; Vomero M; Sharma S; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3931-3934. PubMed ID: 31946732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-based neural electrodes: promises and challenges.
    Devi M; Vomero M; Fuhrer E; Castagnola E; Gueli C; Nimbalkar S; Hirabayashi M; Kassegne S; Stieglitz T; Sharma S
    J Neural Eng; 2021 Sep; 18(4):. PubMed ID: 34404037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing.
    Heo DN; Kim HJ; Lee YJ; Heo M; Lee SJ; Lee D; Do SH; Lee SH; Kwon IK
    ACS Nano; 2017 Mar; 11(3):2961-2971. PubMed ID: 28196320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized carbon nanotube microfibers for chronic neural implants.
    Buschbeck EK; Duc Le A; Kelley C; Hoque MA; Alvarez NT
    J Neurosci Methods; 2021 Dec; 364():109370. PubMed ID: 34562523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing.
    Hejazi M; Tong W; Ibbotson MR; Prawer S; Garrett DJ
    Front Neurosci; 2021; 15():658703. PubMed ID: 33912007
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.