These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 35002606)
21. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Ramesh N; Pandey UB Front Mol Neurosci; 2017; 10():263. PubMed ID: 28878620 [TBL] [Abstract][Full Text] [Related]
22. Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities. Joardar A; Manzo E; Zarnescu DC Curr Genet Med Rep; 2017 Jun; 5(2):108-114. PubMed ID: 29057168 [TBL] [Abstract][Full Text] [Related]
23. The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Kalmar B; Lu CH; Greensmith L Pharmacol Ther; 2014 Jan; 141(1):40-54. PubMed ID: 23978556 [TBL] [Abstract][Full Text] [Related]
24. The Role of VCP Mutations in the Spectrum of Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Scarian E; Fiamingo G; Diamanti L; Palmieri I; Gagliardi S; Pansarasa O Front Neurol; 2022; 13():841394. PubMed ID: 35273561 [TBL] [Abstract][Full Text] [Related]
25. How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other? Baloh RH Curr Opin Neurol; 2012 Dec; 25(6):701-7. PubMed ID: 23041957 [TBL] [Abstract][Full Text] [Related]
26. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Donnelly CJ; Grima JC; Sattler R Neurodegener Dis Manag; 2014; 4(6):417-37. PubMed ID: 25531686 [TBL] [Abstract][Full Text] [Related]
27. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Dafinca R; Scaber J; Ababneh N; Lalic T; Weir G; Christian H; Vowles J; Douglas AG; Fletcher-Jones A; Browne C; Nakanishi M; Turner MR; Wade-Martins R; Cowley SA; Talbot K Stem Cells; 2016 Aug; 34(8):2063-78. PubMed ID: 27097283 [TBL] [Abstract][Full Text] [Related]
28. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Koike Y; Onodera O Front Neurosci; 2023; 17():1131758. PubMed ID: 36895420 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Shang Y; Huang EJ Brain Res; 2016 Sep; 1647():65-78. PubMed ID: 27033831 [TBL] [Abstract][Full Text] [Related]
31. Modelling amyotrophic lateral sclerosis: progress and possibilities. Van Damme P; Robberecht W; Van Den Bosch L Dis Model Mech; 2017 May; 10(5):537-549. PubMed ID: 28468939 [TBL] [Abstract][Full Text] [Related]
32. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Rinchetti P; Rizzuti M; Faravelli I; Corti S Mol Neurobiol; 2018 Mar; 55(3):2617-2630. PubMed ID: 28421535 [TBL] [Abstract][Full Text] [Related]
33. The Role of Mitochondrial Dysfunction and ER Stress in TDP-43 and C9ORF72 ALS. Dafinca R; Barbagallo P; Talbot K Front Cell Neurosci; 2021; 15():653688. PubMed ID: 33867942 [TBL] [Abstract][Full Text] [Related]
34. Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Lin G; Mao D; Bellen HJ Curr Top Dev Biol; 2017; 121():111-171. PubMed ID: 28057298 [TBL] [Abstract][Full Text] [Related]
35. RNA-Binding Proteins in Amyotrophic Lateral Sclerosis and Neurodegeneration. Ugras SE; Shorter J Neurol Res Int; 2012; 2012():432780. PubMed ID: 22919483 [TBL] [Abstract][Full Text] [Related]
36. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain. Gregory JM; Livesey MR; McDade K; Selvaraj BT; Barton SK; Chandran S; Smith C J Pathol; 2020 Jan; 250(1):67-78. PubMed ID: 31579943 [TBL] [Abstract][Full Text] [Related]
37. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS. Bury JJ; Highley JR; Cooper-Knock J; Goodall EF; Higginbottom A; McDermott CJ; Ince PG; Shaw PJ; Kirby J Neuropathology; 2016 Apr; 36(2):125-34. PubMed ID: 26303227 [TBL] [Abstract][Full Text] [Related]
38. Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship. Candelise N; Salvatori I; Scaricamazza S; Nesci V; Zenuni H; Ferri A; Valle C Metabolites; 2022 Mar; 12(3):. PubMed ID: 35323676 [TBL] [Abstract][Full Text] [Related]
39. Partial Failure of Proteostasis Systems Counteracting TDP-43 Aggregates in Neurodegenerative Diseases. Cascella R; Fani G; Bigi A; Chiti F; Cecchi C Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357627 [TBL] [Abstract][Full Text] [Related]
40. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. de Boer EMJ; Orie VK; Williams T; Baker MR; De Oliveira HM; Polvikoski T; Silsby M; Menon P; van den Bos M; Halliday GM; van den Berg LH; Van Den Bosch L; van Damme P; Kiernan MC; van Es MA; Vucic S J Neurol Neurosurg Psychiatry; 2020 Nov; 92(1):86-95. PubMed ID: 33177049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]