BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35002784)

  • 1. Physiological Mechanisms Regulating Lens Transport.
    Giannone AA; Li L; Sellitto C; White TW
    Front Physiol; 2021; 12():818649. PubMed ID: 35002784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ciliary Muscle and Zonules of Zinn Modulate Lens Intracellular Hydrostatic Pressure Through Transient Receptor Potential Vanilloid Channels.
    Chen Y; Gao J; Li L; Sellitto C; Mathias RT; Donaldson PJ; White TW
    Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4416-4424. PubMed ID: 31639828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of water flow in the ocular lens: new roles for aquaporins.
    Donaldson PJ; Petrova RS; Nair N; Chen Y; Schey KL
    J Physiol; 2023 Oct; ():. PubMed ID: 37843390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of the Mechanisms of Maintaining the Transparency of the Lens and Treatment of Its Related Diseases for Making Anti-cataract and/or Anti-presbyopia Drugs].
    Nakazawa Y
    Yakugaku Zasshi; 2020; 140(9):1095-1099. PubMed ID: 32879241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiological optics of the lens.
    Donaldson PJ; Grey AC; Maceo Heilman B; Lim JC; Vaghefi E
    Prog Retin Eye Res; 2017 Jan; 56():e1-e24. PubMed ID: 27639549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular hydrostatic pressure regulation in the bovine lens: a role in the regulation of lens optics?
    Chen Y; Petrova RS; Qiu C; Donaldson PJ
    Am J Physiol Regul Integr Comp Physiol; 2022 Mar; 322(3):R263-R279. PubMed ID: 35107027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of lens water content: Effects on the physiological optics of the lens.
    Donaldson PJ; Chen Y; Petrova RS; Grey AC; Lim JC
    Prog Retin Eye Res; 2023 Jul; 95():101152. PubMed ID: 36470825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Significance of TRPV4 Channels and Hemichannels in the Lens and Ciliary Epithelium.
    Delamere NA; Mandal A; Shahidullah M
    J Ocul Pharmacol Ther; 2016 Oct; 32(8):504-508. PubMed ID: 27513167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling Between TRPV1/TRPV4 and Intracellular Hydrostatic Pressure in the Mouse Lens.
    Delamere NA; Shahidullah M; Mathias RT; Gao J; Sun X; Sellitto C; White TW
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):58. PubMed ID: 32598448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion Transport Regulation by TRPV4 and TRPV1 in Lens and Ciliary Epithelium.
    Delamere NA; Shahidullah M
    Front Physiol; 2021; 12():834916. PubMed ID: 35173627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the Membrane Trafficking of the Mechanosensitive Ion Channels TRPV1 and TRPV4 by Zonular Tension, Osmotic Stress and Activators in the Mouse Lens.
    Nakazawa Y; Petrova RS; Sugiyama Y; Nagai N; Tamura H; Donaldson PJ
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verification and spatial mapping of TRPV1 and TRPV4 expression in the embryonic and adult mouse lens.
    Nakazawa Y; Donaldson PJ; Petrova RS
    Exp Eye Res; 2019 Sep; 186():107707. PubMed ID: 31229503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens.
    Gao J; Sun X; White TW; Delamere NA; Mathias RT
    Biophys J; 2015 Nov; 109(9):1830-9. PubMed ID: 26536260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development.
    Li Z; Quan Y; Gu S; Jiang JX
    Front Cell Dev Biol; 2022; 10():866980. PubMed ID: 35465319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling.
    Gao J; Sun X; Moore LC; White TW; Brink PR; Mathias RT
    J Gen Physiol; 2011 Jun; 137(6):507-20. PubMed ID: 21624945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.
    Shahidullah M; Mandal A; Delamere NA
    Exp Eye Res; 2015 Nov; 140():85-93. PubMed ID: 26318609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Membrane Trafficking of AQP5 in the Lens in Response to Changes in Zonular Tension Is Mediated by the Mechanosensitive Channel TRPV1.
    Petrova RS; Nair N; Bavana N; Chen Y; Schey KL; Donaldson PJ
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Alpha-Glucosyl-Hesperidin Consumption on Lens Sclerosis and Presbyopia.
    Nakazawa Y; Doki Y; Sugiyama Y; Kobayashi R; Nagai N; Morisita N; Endo S; Funakoshi-Tago M; Tamura H
    Cells; 2021 Feb; 10(2):. PubMed ID: 33673261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexins in lens development and cataractogenesis.
    Gong X; Cheng C; Xia CH
    J Membr Biol; 2007 Aug; 218(1-3):9-12. PubMed ID: 17578632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development.
    Sellitto C; Li L; Gao J; Robinson ML; Lin RZ; Mathias RT; White TW
    J Clin Invest; 2013 Dec; 123(12):5401-9. PubMed ID: 24270425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.