These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35003042)

  • 1. Cold Shock Proteins Promote Nisin Tolerance in
    Muchaamba F; Wambui J; Stephan R; Tasara T
    Front Microbiol; 2021; 12():811939. PubMed ID: 35003042
    [No Abstract]   [Full Text] [Related]  

  • 2. Cold-Shock Domain Family Proteins (Csps) Are Involved in Regulation of Virulence, Cellular Aggregation, and Flagella-Based Motility in
    Eshwar AK; Guldimann C; Oevermann A; Tasara T
    Front Cell Infect Microbiol; 2017; 7():453. PubMed ID: 29124040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lipoteichoic Acid-Related Proteins YqgS and LafA Contribute to the Resistance of Listeria monocytogenes to Nisin.
    Pang X; Wu Y; Liu X; Wu Y; Shu Q; Niu J; Chen Q; Zhang X
    Microbiol Spectr; 2022 Feb; 10(1):e0209521. PubMed ID: 35196823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts.
    Kang J; Wiedmann M; Boor KJ; Bergholz TM
    Appl Environ Microbiol; 2015 Jul; 81(13):4553-62. PubMed ID: 25911485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nevertheless, She Resisted - Role of the Environment on
    Henderson LO; Erazo Flores BJ; Skeens J; Kent D; Murphy SI; Wiedmann M; Guariglia-Oropeza V
    Front Microbiol; 2020; 11():635. PubMed ID: 32328054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in
    Goedseels M; Michiels CW
    Microorganisms; 2023 Aug; 11(8):. PubMed ID: 37630584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cold shock proteins B and D in
    Hossain A; Gnanagobal H; Cao T; Chakraborty S; Chukwu-Osazuwa J; Soto-Dávila M; Vasquez I; Santander J
    Infect Immun; 2024 Jun; ():e0001124. PubMed ID: 38920386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants.
    Collins B; Guinane CM; Cotter PD; Hill C; Ross RP
    Appl Environ Microbiol; 2012 Apr; 78(8):2923-9. PubMed ID: 22327581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Redundancy and Specialization of the Conserved Cold Shock Proteins in
    Faßhauer P; Busche T; Kalinowski J; Mäder U; Poehlein A; Daniel R; Stülke J
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights on the Role of the pLMST6 Plasmid in
    Kropac AC; Eshwar AK; Stephan R; Tasara T
    Front Microbiol; 2019; 10():1538. PubMed ID: 31338084
    [No Abstract]   [Full Text] [Related]  

  • 11. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response.
    Stincone P; Fonseca Veras F; Micalizzi G; Donnarumma D; Vitale Celano G; Petras D; de Angelis M; Mondello L; Brandelli A
    Cell Mol Life Sci; 2022 Apr; 79(5):263. PubMed ID: 35482131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-silico study to understand the effect of lineage diversity on cold shock response: unveiling protein-RNA interactions among paralogous CSPs of
    Roy A; Ray S
    3 Biotech; 2023 Jul; 13(7):236. PubMed ID: 37333716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes.
    Sun L; Van Loey A; Buvé C; Michiels CW
    Microbiol Spectr; 2023 Jun; 11(3):e0487722. PubMed ID: 37036358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination.
    Cardoza E; Singh H
    Pathogens; 2024 Jan; 13(1):. PubMed ID: 38251376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of
    Smith MK; Draper LA; Hazelhoff PJ; Cotter PD; Ross RP; Hill C
    Front Microbiol; 2016; 7():1939. PubMed ID: 27965658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure.
    Wemekamp-Kamphuis HH; Karatzas AK; Wouters JA; Abee T
    Appl Environ Microbiol; 2002 Feb; 68(2):456-63. PubMed ID: 11823178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes.
    Bombelli A; Araya-Cloutier C; Boeren S; Vincken JP; Abee T; den Besten HMW
    Food Res Int; 2024 Jan; 175():113687. PubMed ID: 38128979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation mechanisms of
    Schulz LM; Dreier F; de Sousa Miranda LM; Rismondo J
    Microbiol Spectr; 2023 Sep; 11(5):e0144123. PubMed ID: 37695041
    [No Abstract]   [Full Text] [Related]  

  • 19. The Capacity of
    Ceruso M; Fratamico P; Chirollo C; Taglialatela R; Cortesi ML; Pepe T
    Ital J Food Saf; 2014 Jan; 3(1):1657. PubMed ID: 27800311
    [No Abstract]   [Full Text] [Related]  

  • 20. The Effect of Nanoscale Modification of Nisin by Different Milk-Derived Proteins on Its Physicochemical Properties and Antibacterial Activity.
    Wang J; Liu R; Huang X; Bao Y; Wang X; Yi H; Lu Y
    Foods; 2024 May; 13(11):. PubMed ID: 38890836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.