These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3213 related articles for article (PubMed ID: 35003058)
1. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Kuba K; Yamaguchi T; Penninger JM Front Immunol; 2021; 12():732690. PubMed ID: 35003058 [TBL] [Abstract][Full Text] [Related]
2. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Datta PK; Liu F; Fischer T; Rappaport J; Qin X Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a Novel ACE2-Based Therapeutic with Enhanced Rather than Reduced Activity against SARS-CoV-2 Variants. Ferrari M; Mekkaoui L; Ilca FT; Akbar Z; Bughda R; Lamb K; Ward K; Parekh F; Karattil R; Allen C; Wu P; Baldan V; Mattiuzzo G; Bentley EM; Takeuchi Y; Sillibourne J; Datta P; Kinna A; Pule M; Onuoha SC J Virol; 2021 Sep; 95(19):e0068521. PubMed ID: 34287040 [TBL] [Abstract][Full Text] [Related]
4. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. Lu J; Sun PD J Biol Chem; 2020 Dec; 295(52):18579-18588. PubMed ID: 33122196 [TBL] [Abstract][Full Text] [Related]
5. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537 [TBL] [Abstract][Full Text] [Related]
7. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
8. ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Yamaguchi T; Hoshizaki M; Minato T; Nirasawa S; Asaka MN; Niiyama M; Imai M; Uda A; Chan JF; Takahashi S; An J; Saku A; Nukiwa R; Utsumi D; Kiso M; Yasuhara A; Poon VK; Chan CC; Fujino Y; Motoyama S; Nagata S; Penninger JM; Kamada H; Yuen KY; Kamitani W; Maeda K; Kawaoka Y; Yasutomi Y; Imai Y; Kuba K Nat Commun; 2021 Nov; 12(1):6791. PubMed ID: 34815389 [TBL] [Abstract][Full Text] [Related]
9. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Ashraf UM; Abokor AA; Edwards JM; Waigi EW; Royfman RS; Hasan SA; Smedlund KB; Hardy AMG; Chakravarti R; Koch LG Physiol Genomics; 2021 Feb; 53(2):51-60. PubMed ID: 33275540 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 Variants, RBD Mutations, Binding Affinity, and Antibody Escape. Yang L; Li J; Guo S; Hou C; Liao C; Shi L; Ma X; Jiang S; Zheng B; Fang Y; Ye L; He X Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34829998 [TBL] [Abstract][Full Text] [Related]
11. Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review. Aleksova A; Gagno G; Sinagra G; Beltrami AP; Janjusevic M; Ippolito G; Zumla A; Fluca AL; Ferro F Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926110 [TBL] [Abstract][Full Text] [Related]
12. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex. Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435 [TBL] [Abstract][Full Text] [Related]
13. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Panigrahi S; Goswami T; Ferrari B; Antonelli CJ; Bazdar DA; Gilmore H; Freeman ML; Lederman MM; Sieg SF Microbiol Spectr; 2021 Dec; 9(3):e0073521. PubMed ID: 34935423 [TBL] [Abstract][Full Text] [Related]
14. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Malek Mahdavi A Rev Med Virol; 2020 Sep; 30(5):e2119. PubMed ID: 32584474 [TBL] [Abstract][Full Text] [Related]
16. In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus at the ACE2-Spike RBD Interface. Villoutreix BO; Calvez V; Marcelin AG; Khatib AM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567580 [TBL] [Abstract][Full Text] [Related]
17. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815 [TBL] [Abstract][Full Text] [Related]
19. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. Fuentes-Prior P J Biol Chem; 2021; 296():100135. PubMed ID: 33268377 [TBL] [Abstract][Full Text] [Related]