These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
779 related articles for article (PubMed ID: 35003065)
1. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C Front Immunol; 2021; 12():754196. PubMed ID: 35003065 [TBL] [Abstract][Full Text] [Related]
2. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Hou A; Hou K; Huang Q; Lei Y; Chen W Front Immunol; 2020; 11():783. PubMed ID: 32508809 [TBL] [Abstract][Full Text] [Related]
3. Immunotherapy of targeting MDSCs in tumor microenvironment. Sui H; Dongye S; Liu X; Xu X; Wang L; Jin CQ; Yao M; Gong Z; Jiang D; Zhang K; Liu Y; Liu H; Jiang G; Su Y Front Immunol; 2022; 13():990463. PubMed ID: 36131911 [TBL] [Abstract][Full Text] [Related]
4. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer. Takeyama Y; Kato M; Tamada S; Azuma Y; Shimizu Y; Iguchi T; Yamasaki T; Gi M; Wanibuchi H; Nakatani T Cancer Lett; 2020 Jun; 479():89-99. PubMed ID: 32200039 [TBL] [Abstract][Full Text] [Related]
5. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P Front Immunol; 2020; 11():585214. PubMed ID: 33613512 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Carnevalli LS; Ghadially H; Barry ST Front Immunol; 2021; 12():633685. PubMed ID: 33953710 [TBL] [Abstract][Full Text] [Related]
7. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307 [TBL] [Abstract][Full Text] [Related]
8. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739 [TBL] [Abstract][Full Text] [Related]
9. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Pingili AK; Chaib M; Sipe LM; Miller EJ; Teng B; Sharma R; Yarbro JR; Asemota S; Al Abdallah Q; Mims TS; Marion TN; Daria D; Sekhri R; Hamilton AM; Troester MA; Jo H; Choi HY; Hayes DN; Cook KL; Narayanan R; Pierre JF; Makowski L Cell Rep; 2021 Jun; 35(12):109285. PubMed ID: 34161764 [TBL] [Abstract][Full Text] [Related]
10. Neogambogic acid enhances anti-PD-1 immunotherapy efficacy by attenuating suppressive function of MDSCs in pancreatic cancer. Xun J; Jiang X; Liu B; Hu Z; Liu J; Han Y; Gao R; Zhang H; Yang S; Yu X; Wang X; Yan C; Zhang Q Int Immunopharmacol; 2024 Sep; 139():112696. PubMed ID: 39018692 [TBL] [Abstract][Full Text] [Related]
11. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma. Yu SJ; Ma C; Heinrich B; Brown ZJ; Sandhu M; Zhang Q; Fu Q; Agdashian D; Rosato U; Korangy F; Greten TF J Hepatol; 2019 Mar; 70(3):449-457. PubMed ID: 30414862 [TBL] [Abstract][Full Text] [Related]
12. Semaphorin4D Inhibition Improves Response to Immune-Checkpoint Blockade via Attenuation of MDSC Recruitment and Function. Clavijo PE; Friedman J; Robbins Y; Moore EC; Smith E; Zauderer M; Evans EE; Allen CT Cancer Immunol Res; 2019 Feb; 7(2):282-291. PubMed ID: 30514791 [TBL] [Abstract][Full Text] [Related]
14. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. De Cicco P; Ercolano G; Ianaro A Front Immunol; 2020; 11():1680. PubMed ID: 32849585 [TBL] [Abstract][Full Text] [Related]
15. PI3Kγδ inhibitor plus radiation enhances the antitumour immune effect of PD-1 blockade in syngenic murine breast cancer and humanised patient-derived xenograft model. Han MG; Jang BS; Kang MH; Na D; Kim IA Eur J Cancer; 2021 Nov; 157():450-463. PubMed ID: 34601286 [TBL] [Abstract][Full Text] [Related]
16. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy. Huo S; Liu L; Li Q; Wang J Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480 [TBL] [Abstract][Full Text] [Related]
17. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Han X; Li H; Zhou D; Chen Z; Gu Z Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988 [TBL] [Abstract][Full Text] [Related]
18. Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8 Zhang Md J; Zhang Md L; Yang Md Y; Liu Md Q; Ma Md H; Huang Md A; Zhao Md Y; Xia Md Z; Liu Md T; Wu Md G Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1533-1546. PubMed ID: 33238192 [TBL] [Abstract][Full Text] [Related]
19. Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Xin G; Chen Y; Topchyan P; Kasmani MY; Burns R; Volberding PJ; Wu X; Cohn A; Chen Y; Lin CW; Ho PC; Silverstein R; Dwinell MB; Cui W Cancer Immunol Res; 2021 Apr; 9(4):454-469. PubMed ID: 33579728 [TBL] [Abstract][Full Text] [Related]