These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35003151)

  • 1. Functional-Structural Plant Models Mission in Advancing Crop Science: Opportunities and Prospects.
    Soualiou S; Wang Z; Sun W; de Reffye P; Collins B; Louarn G; Song Y
    Front Plant Sci; 2021; 12():747142. PubMed ID: 35003151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery.
    Zhang P; Huang J; Ma Y; Wang X; Kang M; Song Y
    Plant Phenomics; 2023; 5():0091. PubMed ID: 37780969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop/Plant Modeling Supports Plant Breeding: I. Optimization of Environmental Factors in Accelerating Crop Growth and Development for Speed Breeding.
    Yu Y; Cheng Q; Wang F; Zhu Y; Shang X; Jones A; He H; Song Y
    Plant Phenomics; 2023; 5():0099. PubMed ID: 37817886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field phenotyping for African crops: overview and perspectives.
    Cudjoe DK; Virlet N; Castle M; Riche AB; Mhada M; Waine TW; Mohareb F; Hawkesford MJ
    Front Plant Sci; 2023; 14():1219673. PubMed ID: 37860243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of crop simulation modelling to aid ideotype design of future cereal cultivars.
    Rötter RP; Tao F; Höhn JG; Palosuo T
    J Exp Bot; 2015 Jun; 66(12):3463-76. PubMed ID: 25795739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can We Harness "Enviromics" to Accelerate Crop Improvement by Integrating Breeding and Agronomy?
    Cooper M; Messina CD
    Front Plant Sci; 2021; 12():735143. PubMed ID: 34567047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology.
    Louarn G; Song Y
    Ann Bot; 2020 Sep; 126(4):501-509. PubMed ID: 32725187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving process-based crop models to better capture genotype×environment×management interactions.
    Wang E; Brown HE; Rebetzke GJ; Zhao Z; Zheng B; Chapman SC
    J Exp Bot; 2019 Apr; 70(9):2389-2401. PubMed ID: 30921457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress.
    Gu J; Yin X; Zhang C; Wang H; Struik PC
    Ann Bot; 2014 Sep; 114(3):499-511. PubMed ID: 24984712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges.
    Weih M; Adam E; Vico G; Rubiales D
    Front Plant Sci; 2022; 13():720486. PubMed ID: 35185972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies.
    Gosa SC; Lupo Y; Moshelion M
    Plant Sci; 2019 May; 282():49-59. PubMed ID: 31003611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future scenarios for plant phenotyping.
    Fiorani F; Schurr U
    Annu Rev Plant Biol; 2013; 64():267-91. PubMed ID: 23451789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying traits for genotypic adaptation using crop models.
    Ramirez-Villegas J; Watson J; Challinor AJ
    J Exp Bot; 2015 Jun; 66(12):3451-62. PubMed ID: 25750429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.
    Milla R; Morente-López J; Alonso-Rodrigo JM; Martín-Robles N; Chapin FS
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25185998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.