These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35003151)

  • 21. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives.
    Rasheed A; Hao Y; Xia X; Khan A; Xu Y; Varshney RK; He Z
    Mol Plant; 2017 Aug; 10(8):1047-1064. PubMed ID: 28669791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals.
    Chenu K; Van Oosterom EJ; McLean G; Deifel KS; Fletcher A; Geetika G; Tirfessa A; Mace ES; Jordan DR; Sulman R; Hammer GL
    J Exp Bot; 2018 Jun; 69(13):3181-3194. PubMed ID: 29474730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bridging Time-series Image Phenotyping and Functional-Structural Plant Modeling to Predict Adventitious Root System Architecture.
    Parasurama S; Banan D; Yun K; Doty S; Kim SH
    Plant Phenomics; 2023; 5():0127. PubMed ID: 38143722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities.
    Tracy SR; Nagel KA; Postma JA; Fassbender H; Wasson A; Watt M
    Trends Plant Sci; 2020 Jan; 25(1):105-118. PubMed ID: 31806535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological phenotyping of plants for crop improvement.
    Ghanem ME; Marrou H; Sinclair TR
    Trends Plant Sci; 2015 Mar; 20(3):139-44. PubMed ID: 25524213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology.
    Muñoz-Sanz JV; Zuriaga E; Cruz-García F; McClure B; Romero C
    Front Plant Sci; 2020; 11():195. PubMed ID: 32265945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addressing Research Bottlenecks to Crop Productivity.
    Reynolds M; Atkin OK; Bennett M; Cooper M; Dodd IC; Foulkes MJ; Frohberg C; Hammer G; Henderson IR; Huang B; Korzun V; McCouch SR; Messina CD; Pogson BJ; Slafer GA; Taylor NL; Wittich PE
    Trends Plant Sci; 2021 Jun; 26(6):607-630. PubMed ID: 33893046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling Crop Genetic Resources Phenotyping Information Systems.
    Germeier CU; Unger S
    Front Plant Sci; 2019; 10():728. PubMed ID: 31281323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits.
    Mochida K; Nishii R; Hirayama T
    Plant Cell Physiol; 2020 Aug; 61(8):1408-1418. PubMed ID: 32392328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of Multi-Omics Technologies for Crop Improvement.
    Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F
    Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding crop genetic diversity under modern plant breeding.
    Fu YB
    Theor Appl Genet; 2015 Nov; 128(11):2131-42. PubMed ID: 26246331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.
    De Deyn GB
    Commun Agric Appl Biol Sci; 2015; 80(2):3-8. PubMed ID: 27145568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systems models, phenomics and genomics: three pillars for developing high-yielding photosynthetically efficient crops.
    Chang TG; Chang S; Song QF; Perveen S; Zhu XG
    In Silico Plants; 2019; 1(1):. PubMed ID: 33381682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yielding to the image: How phenotyping reproductive growth can assist crop improvement and production.
    Dreccer MF; Molero G; Rivera-Amado C; John-Bejai C; Wilson Z
    Plant Sci; 2019 May; 282():73-82. PubMed ID: 31003613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity in Plant Breeding: A New Conceptual Framework.
    Litrico I; Violle C
    Trends Plant Sci; 2015 Oct; 20(10):604-613. PubMed ID: 26440430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding.
    Varshney RK; Terauchi R; McCouch SR
    PLoS Biol; 2014 Jun; 12(6):e1001883. PubMed ID: 24914810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.
    Drewry DT; Kumar P; Long SP
    Glob Chang Biol; 2014 Jun; 20(6):1955-67. PubMed ID: 24700722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.