BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35003249)

  • 1. Sequence Fusion Algorithm of Tumor Gene Sequencing and Alignment Based on Machine Learning.
    Tang C; Luo L; Xu Y; Chen G; Tang L; Wang Y; Wu Y; Shi X
    Comput Intell Neurosci; 2021; 2021():9444194. PubMed ID: 35003249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fusion Method Based on Alignment Software with SNP and Indel Detection Methods.
    Chen G; Tang C; Qi J; Wang Y; Shi X
    Comb Chem High Throughput Screen; 2022; 25(3):519-527. PubMed ID: 33308124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Position Index Mutation Detection Algorithm Based on Feedback Fast Learning Neural Network.
    Zuo Z; Tang C; Xu Y; Wang Y; Wu Y; Qi J; Shi X
    Comput Intell Neurosci; 2021; 2021():1716182. PubMed ID: 34306047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of variant detection software for pooled next-generation sequence data.
    Huang HW; ; Mullikin JC; Hansen NF
    BMC Bioinformatics; 2015 Jul; 16():235. PubMed ID: 26220471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calling known variants and identifying new variants while rapidly aligning sequence data.
    VanRaden PM; Bickhart DM; O'Connell JR
    J Dairy Sci; 2019 Apr; 102(4):3216-3229. PubMed ID: 30772032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SomaticSeq: An Ensemble and Machine Learning Method to Detect Somatic Mutations.
    Fang LT
    Methods Mol Biol; 2020; 2120():47-70. PubMed ID: 32124311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exon sequencing mutation detection algorithm based on PCR matching.
    Chen G; Xie X
    PLoS One; 2020; 15(8):e0236709. PubMed ID: 32790736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of indel calling tools using real short-read data.
    Hasan MS; Wu X; Zhang L
    Hum Genomics; 2015 Aug; 9(1):20. PubMed ID: 26286629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The challenge of detecting indels in bacterial genomes from short-read sequencing data.
    Steglich M; NĂ¼bel U
    J Biotechnol; 2017 May; 250():11-15. PubMed ID: 28267569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of INDEL Calling Tools with Simulation Data and Real Short-Read Data.
    Li D; Kim W; Wang L; Yoon KA; Park B; Park C; Kong SY; Hwang Y; Baek D; Lee ES; Won S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1635-1644. PubMed ID: 30004886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data.
    Chen K; McLellan MD; Ding L; Wendl MC; Kasai Y; Wilson RK; Mardis ER
    Genome Res; 2007 May; 17(5):659-66. PubMed ID: 17416743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken.
    Ni G; Strom TM; Pausch H; Reimer C; Preisinger R; Simianer H; Erbe M
    BMC Genomics; 2015 Oct; 16():824. PubMed ID: 26486989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for identifying resistance features of
    Liu W; Ying N; Mo Q; Li S; Shao M; Sun L; Zhu L
    J Med Microbiol; 2021 Nov; 70(11):. PubMed ID: 34812714
    [No Abstract]   [Full Text] [Related]  

  • 18. Genome-Wide Copy Number Variation Detection Using NGS: Data Analysis and Interpretation.
    Shen W; Szankasi P; Durtschi J; Kelley TW; Xu X
    Methods Mol Biol; 2019; 1908():113-124. PubMed ID: 30649724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA.
    Kockan C; Hach F; Sarrafi I; Bell RH; McConeghy B; Beja K; Haegert A; Wyatt AW; Volik SV; Chi KN; Collins CC; Sahinalp SC
    Bioinformatics; 2017 Jan; 33(1):26-34. PubMed ID: 27531099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vindel: a simple pipeline for checking indel redundancy.
    Li Z; Wu X; He B; Zhang L
    BMC Bioinformatics; 2014 Nov; 15(1):359. PubMed ID: 25407965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.