BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35003598)

  • 1. Inhibition of [FeFe]-hydrogenase by formaldehyde: proposed mechanism and reactivity of FeFe alkyl complexes.
    Zhang F; Woods TJ; Zhu L; Rauchfuss TB
    Chem Sci; 2021 Dec; 12(47):15673-15681. PubMed ID: 35003598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrids of [FeFe]- and [NiFe]-H
    Zhang F; Woods TJ; Rauchfuss TB
    Organometallics; 2023 Jul; 42(13):1607-1614. PubMed ID: 37928214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction.
    Gao W; Ekström J; Liu J; Chen C; Eriksson L; Weng L; Akermark B; Sun L
    Inorg Chem; 2007 Mar; 46(6):1981-91. PubMed ID: 17295467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, structure, and electrocatalysis of diiron C-functionalized propanedithiolate (PDT) complexes related to the active site of [FeFe]-hydrogenases.
    Song LC; Li CG; Gao J; Yin BS; Luo X; Zhang XG; Bao HL; Hu QM
    Inorg Chem; 2008 Jun; 47(11):4545-53. PubMed ID: 18439002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases.
    Li H; Rauchfuss TB
    J Am Chem Soc; 2002 Feb; 124(5):726-7. PubMed ID: 11817928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.
    Zheng D; Wang M; Chen L; Wang N; Sun L
    Inorg Chem; 2014 Feb; 53(3):1555-61. PubMed ID: 24422466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic and structural studies on [Fe2(SR)2(CN)x(CO)6-x](x-) as active site models for Fe-only hydrogenases.
    Gloaguen F; Lawrence JD; Schmidt M; Wilson SR; Rauchfuss TB
    J Am Chem Soc; 2001 Dec; 123(50):12518-27. PubMed ID: 11741415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protonation of [FeFe]-hydrogenase sub-site analogues: revealing mechanism using FTIR stopped-flow techniques.
    Wright JA; Webster L; Jablonskyte A; Woi PM; Ibrahim SK; Pickett CJ
    Faraday Discuss; 2011; 148():359-71; discussion 421-41. PubMed ID: 21322493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site.
    Olsen MT; Bruschi M; De Gioia L; Rauchfuss TB; Wilson SR
    J Am Chem Soc; 2008 Sep; 130(36):12021-30. PubMed ID: 18700771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surprising Condensation Reactions of the Azadithiolate Cofactor.
    Zhang F; Richers CP; Woods TJ; Rauchfuss TB
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20744-20747. PubMed ID: 34324230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diferrous cyanides as models for the Fe-only hydrogenases.
    Boyke CA; van der Vlugt JI; Rauchfuss TB; Wilson SR; Zampella G; De Gioia L
    J Am Chem Soc; 2005 Aug; 127(31):11010-8. PubMed ID: 16076208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts.
    Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D
    Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids.
    Song LC; Zhu AG; Guo YQ
    Dalton Trans; 2016 Mar; 45(12):5021-9. PubMed ID: 26777138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe
    Orton GRF; Ghosh S; Alker L; Sarker JC; Pugh D; Richmond MG; Hartl F; Hogarth G
    Dalton Trans; 2022 Jun; 51(25):9748-9769. PubMed ID: 35703728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor.
    Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W
    Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and Experimental Investigations of the Fe
    Arrigoni F; Zampella G; Zhang F; Kagalwala HN; Li QL; Woods TJ; Rauchfuss TB
    Inorg Chem; 2021 Mar; 60(6):3917-3926. PubMed ID: 33650855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site.
    Lansing JC; Camara JM; Gray DE; Rauchfuss TB
    Organometallics; 2014 Oct; 33(20):5897-5906. PubMed ID: 25364093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe] Hydrogenases: Stability and Complexation.
    Angamuthu R; Chen CS; Cochrane TR; Gray DL; Schilter D; Ulloa OA; Rauchfuss TB
    Inorg Chem; 2015 Jun; 54(12):5717-24. PubMed ID: 26000618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Spectroscopy, and Structure of [FeRu(μ-dithiolate)(CN)
    Zhang Y; Wang P; Xue S; Woods T; Guo Y; Zampella G; Rauchfuss TB; Arrigoni F
    Inorg Chem; 2023 Oct; 62(41):16842-16853. PubMed ID: 37788376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.