These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35003676)

  • 1. How do Snow Partridge (
    Yao H; Wang P; Davison G; Wang Y; McGowan PJK; Wang N; Xu J
    Ecol Evol; 2021 Dec; 11(24):18331-18341. PubMed ID: 35003676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-glacial isolation caused divergence of cold-adapted species: the case of the snow partridge.
    Yao H; Zhang Y; Wang Z; Liu G; Ran Q; Zhang Z; Guo K; Yang A; Wang N; Wang P
    Curr Zool; 2022 Aug; 68(4):489-498. PubMed ID: 36090147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeography of Tibetan snowcock (Tetraogallus tibetanus) in Qinghai-Tibetan Plateau.
    An B; Zhang L; Browne S; Liu N; Ruan L; Song S
    Mol Phylogenet Evol; 2009 Mar; 50(3):526-33. PubMed ID: 19111936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refugia persistence of Qinghai-Tibetan plateau by the cold-tolerant bird Tetraogallus tibetanus (Galliformes: Phasianidae).
    An B; Zhang L; Liu N; Wang Y
    PLoS One; 2015; 10(3):e0121118. PubMed ID: 25822918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The uplift of the Qinghai-Tibet Plateau and glacial oscillations triggered the diversification of
    Ding L; Liao J; Liu N
    Ecol Evol; 2020 Feb; 10(3):1722-1736. PubMed ID: 32076546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.
    Zhang C; Quan Q; Wu Y; Chen Y; He P; Qu Y; Lei F
    Curr Zool; 2017 Apr; 63(2):131-137. PubMed ID: 29491970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: Refugia Persistence of Qinghai-Tibetan Plateau by the Cold-Tolerant Bird Tetraogallus tibetanus (Galliformes: Phasianidae).
    An B; Zhang L; Liu N; Wang Y
    PLoS One; 2015; 10(6):e0130098. PubMed ID: 26039054
    [No Abstract]   [Full Text] [Related]  

  • 8. Habitat Use and Activity Patterns of Mammals and Birds in Relation to Temperature and Vegetation Cover in the Alpine Ecosystem of Southwestern China with Camera-Trapping Monitoring.
    Li Z; Tang Z; Xu Y; Wang Y; Duan Z; Liu X; Wang P; Yang J; Chen W; Prins HHT
    Animals (Basel); 2021 Nov; 11(12):. PubMed ID: 34944154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling future changes in potential habitats of five alpine vegetation types on the Tibetan Plateau by incorporating snow depth and snow phenology.
    Ma Q; Li Y; Li X; Liu J; Keyimu M; Zeng F; Liu Y
    Sci Total Environ; 2024 Mar; 918():170399. PubMed ID: 38296095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An environmental habitat gradient and within-habitat segregation enable co-existence of ecologically similar bird species.
    Ayebare S; Doser JW; Plumptre AJ; Owiunji I; Mugabe H; Zipkin EF
    Proc Biol Sci; 2023 Aug; 290(2005):20230467. PubMed ID: 37583324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coping with extremes: convergences of habitat use, territoriality, and diet in summer but divergences in winter between two sympatric snow finches on the Qinghai-Tibet Plateau.
    Li D; Davis JE; Sun Y; Wang G; Nabi G; Wingfield JC; Lei F
    Integr Zool; 2020 Nov; 15(6):533-543. PubMed ID: 32627943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MaxEnt Modeling to Predict the Current and Future Distribution of
    Chen K; Wang B; Chen C; Zhou G
    Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate Change-Induced Range Expansion of a Subterranean Rodent: Implications for Rangeland Management in Qinghai-Tibetan Plateau.
    Su J; Aryal A; Nan Z; Ji W
    PLoS One; 2015; 10(9):e0138969. PubMed ID: 26406891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model.
    Ma B; Sun J
    BMC Ecol; 2018 Feb; 18(1):10. PubMed ID: 29466976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributional responses to climate change of two maple species in southern China.
    Liu T; Chen JY; Sun WB
    Ecol Evol; 2023 Sep; 13(9):e10490. PubMed ID: 37664510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau.
    Hu H; Wei Y; Wang W; Suonan J; Wang S; Chen Z; Guan J; Deng Y
    Front Plant Sci; 2022; 13():948189. PubMed ID: 36160966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny and molecular evolution of Tetraogallus in China.
    Luzhang R; Lixun Z; Longying W; Qingwei S; Naifa L
    Biochem Genet; 2005 Oct; 43(9-10):507-18. PubMed ID: 16341767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species.
    Benítez-López A; Viñuela J; Suárez F; Hervás I; García JT
    Oecologia; 2014 Sep; 176(1):193-206. PubMed ID: 25024103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau.
    Hu J; Broennimann O; Guisan A; Wang B; Huang Y; Jiang J
    Sci Rep; 2016 Sep; 6():32624. PubMed ID: 27601098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas.
    Favre A; Päckert M; Pauls SU; Jähnig SC; Uhl D; Michalak I; Muellner-Riehl AN
    Biol Rev Camb Philos Soc; 2015 Feb; 90(1):236-53. PubMed ID: 24784793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.