These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35003850)

  • 21. Virtual Fluorescence Translation for Biological Tissue by Conditional Generative Adversarial Network.
    Liu X; Li B; Liu C; Ta D
    Phenomics; 2023 Aug; 3(4):408-420. PubMed ID: 37589024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Jointly super-resolved and optically sectioned Bayesian reconstruction method for structured illumination microscopy.
    Lai-Tim Y; Mugnier LM; Orieux F; Baena-Gallé R; Paques M; Meimon S
    Opt Express; 2019 Nov; 27(23):33251-33267. PubMed ID: 31878398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel multi-frame wavelet generative adversarial network for scattering reconstruction of structured illumination microscopy.
    Yang B; Liu W; Chen X; Chen G; Zhu X
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37619594
    [No Abstract]   [Full Text] [Related]  

  • 24. Synthetic cranial MRI from 3D optical surface scans using deep learning for radiation therapy treatment planning.
    Douglass M; Gorayski P; Patel S; Santos A
    Phys Eng Sci Med; 2023 Mar; 46(1):367-375. PubMed ID: 36752996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning.
    Li B; Tan S; Dong J; Lian X; Zhang Y; Ji X; Veeraraghavan A
    Biomed Opt Express; 2022 Jan; 13(1):284-299. PubMed ID: 35154871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation.
    Abdelmotaal H; Sharaf M; Soliman W; Wasfi E; Kedwany SM
    BMC Ophthalmol; 2022 Sep; 22(1):355. PubMed ID: 36050661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing resolution and contrast in fibre bundle-based fluorescence microscopy using generative adversarial network.
    Ketabchi AM; Morova B; Uysalli Y; Aydin M; Eren F; Bavili N; Pysz D; Buczynski R; Kiraz A
    J Microsc; 2024 Apr; ():. PubMed ID: 38563195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency.
    Shabani H; Doblas A; Saavedra G; Sanchez-Ortiga E; Preza C
    Appl Opt; 2018 Mar; 57(7):B92-B101. PubMed ID: 29521992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy.
    O'Holleran K; Shaw M
    Biomed Opt Express; 2014 Aug; 5(8):2580-90. PubMed ID: 25136487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks.
    Zhang Z; Ishihata H; Maruyama R; Kasai T; Kameda H; Sugiyama T
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images.
    Qin Z; Liu Z; Zhu P; Ling W
    Comput Biol Med; 2022 Sep; 148():105928. PubMed ID: 35952543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speckle illumination holographic non-scanning fluorescence endoscopy.
    Lin WT; Lin CY; Singh VR; Luo Y
    J Biophotonics; 2018 Nov; 11(11):e201800010. PubMed ID: 29920960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-pixel compressive optical image hiding based on conditional generative adversarial network.
    Li J; Li Y; Li J; Zhang Q; Li J
    Opt Express; 2020 Jul; 28(15):22992-23002. PubMed ID: 32752550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Image formation in structured illumination wide-field fluorescence microscopy.
    Karadaglić D; Wilson T
    Micron; 2008 Oct; 39(7):808-18. PubMed ID: 18337108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of Conventional
    Choi HJ; Seo M; Kim A; Park SH
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512092
    [No Abstract]   [Full Text] [Related]  

  • 36. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.
    Wu Y; Luo Y; Chaudhari G; Rivenson Y; Calis A; de Haan K; Ozcan A
    Light Sci Appl; 2019; 8():25. PubMed ID: 30854197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GANPOP: Generative Adversarial Network Prediction of Optical Properties From Single Snapshot Wide-Field Images.
    Chen MT; Mahmood F; Sweer JA; Durr NJ
    IEEE Trans Med Imaging; 2020 Jun; 39(6):1988-1999. PubMed ID: 31899416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonuniform Correction of Ground-Based Optical Telescope Image Based on Conditional Generative Adversarial Network.
    Guo X; Chen T; Liu J; Liu Y; An Q; Jiang C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination.
    Makhlouf H; Perronet K; Dupuis G; Lévêque-Fort S; Dubois A
    Opt Lett; 2012 May; 37(10):1613-5. PubMed ID: 22627513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiac fat segmentation using computed tomography and an image-to-image conditional generative adversarial neural network.
    Santos da Silva G; Casanova D; Oliva JT; Rodrigues EO
    Med Eng Phys; 2024 Feb; 124():104104. PubMed ID: 38418017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.