These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35004213)

  • 21. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remotely sensing harmful algal blooms in the Red Sea.
    Gokul EA; Raitsos DE; Gittings JA; Alkawri A; Hoteit I
    PLoS One; 2019; 14(4):e0215463. PubMed ID: 30990831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Review of estimation on oceanic primary productivity by using remote sensing methods.].
    Xu HY; Zhou WF; Ji SJ
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):3042-3050. PubMed ID: 29732871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches.
    Evers-King H; Bernard S; Robertson Lain L; Probyn TA
    Opt Express; 2014 May; 22(10):11536-51. PubMed ID: 24921275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-optical evidence for increasing
    Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoplankton bloom detection during the COVID-19 lockdown with remote sensing data: Using Copernicus Sentinel-3 for north-western Arabian/Persian Gulf case study.
    Polikarpov I; Al-Yamani F; Petrov P; Saburova M; Mihalkov V; Al-Enezi A
    Mar Pollut Bull; 2021 Oct; 171():112734. PubMed ID: 34332354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms.
    Aguilar-Maldonado JA; Santamaría-Del-Ángel E; Gonzalez-Silvera A; Sebastiá-Frasquet MT
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic.
    J W Brewin R; Ciavatta S; Sathyendranath S; Skákala J; Bruggeman J; Ford D; Platt T
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global phytoplankton decline over the past century.
    Boyce DG; Lewis MR; Worm B
    Nature; 2010 Jul; 466(7306):591-6. PubMed ID: 20671703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater.
    Werdell PJ; Franz BA; Lefler JT; Robinson WD; Boss E
    Opt Express; 2013 Dec; 21(26):32611-22. PubMed ID: 24514855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves.
    Hayashida H; Matear RJ; Strutton PG
    Glob Chang Biol; 2020 Sep; 26(9):4800-4811. PubMed ID: 32585056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High latitude Southern Ocean phytoplankton have distinctive bio-optical properties.
    Robinson CM; Huot Y; Schuback N; Ryan-Keogh TJ; Thomalla SJ; Antoine D
    Opt Express; 2021 Jul; 29(14):21084-21112. PubMed ID: 34265904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic.
    Neukermans G; Oziel L; Babin M
    Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new simple concept for ocean colour remote sensing using parallel polarisation radiance.
    He X; Pan D; Bai Y; Wang D; Hao Z
    Sci Rep; 2014 Jan; 4():3748. PubMed ID: 24434904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998-2012).
    González Taboada F; Anadón R
    Glob Chang Biol; 2014 Mar; 20(3):698-712. PubMed ID: 23943398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assimilating satellite ocean-colour observations into oceanic ecosystem models.
    Hemmings JC; Srokosz MA; Challenor P; Fasham MJ
    Philos Trans A Math Phys Eng Sci; 2003 Jan; 361(1802):33-9. PubMed ID: 12626236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active and passive optical remote sensing of the aquatic environment: introduction to the feature issue.
    Lee Z; Churnside J; Mao Z; Wu S; Zibordi G
    Appl Opt; 2020 Apr; 59(10):APS1-APS2. PubMed ID: 32400570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term exposure to increasing temperature can offset predicted losses in marine food quality (fatty acids) caused by ocean warming.
    Jin P; Gonzàlez G; Agustí S
    Evol Appl; 2020 Oct; 13(9):2497-2506. PubMed ID: 33005237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.