BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35004214)

  • 1. Statistical methods for analysis of single-cell RNA-sequencing data.
    Das S; Rai SN
    MethodsX; 2021; 8():101580. PubMed ID: 35004214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.
    Das S; Rai SN
    Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZERO-INFLATED QUANTILE RANK-SCORE BASED TEST (ZIQRANK) WITH APPLICATION TO SCRNA-SEQ DIFFERENTIAL GENE EXPRESSION ANALYSIS.
    Ling W; Zhang W; Cheng B; Wei Y
    Ann Appl Stat; 2021 Dec; 15(4):1673-1696. PubMed ID: 35116085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UMI-count modeling and differential expression analysis for single-cell RNA sequencing.
    Chen W; Li Y; Easton J; Finkelstein D; Wu G; Chen X
    Genome Biol; 2018 May; 19(1):70. PubMed ID: 29855333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data.
    Yang Z; Ho YY
    Biometrics; 2022 Jun; 78(2):766-776. PubMed ID: 33720414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data.
    Lause J; Berens P; Kobak D
    Genome Biol; 2021 Sep; 22(1):258. PubMed ID: 34488842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.
    Hu Y; Wang K; Li M
    PLoS Comput Biol; 2020 Jun; 16(6):e1007925. PubMed ID: 32502143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene length and detection bias in single cell RNA sequencing protocols.
    Phipson B; Zappia L; Oshlack A
    F1000Res; 2017; 6():595. PubMed ID: 28529717
    [No Abstract]   [Full Text] [Related]  

  • 9. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning framework for scRNA-seq UMI threshold optimization and accurate classification of cell types.
    Bishara I; Chen J; Griffiths JI; Bild AH; Nath A
    Front Genet; 2022; 13():982019. PubMed ID: 36506328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression.
    Hafemeister C; Satija R
    Genome Biol; 2019 Dec; 20(1):296. PubMed ID: 31870423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects.
    Liu Y; Zhao J; Adams TS; Wang N; Schupp JC; Wu W; McDonough JE; Chupp GL; Kaminski N; Wang Z; Yan X
    BMC Bioinformatics; 2023 Aug; 24(1):318. PubMed ID: 37608264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information.
    Qi J; Sheng Q; Zhou Y; Hua J; Xiao S; Jin S
    Cell Biosci; 2022 Sep; 12(1):142. PubMed ID: 36056412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics.
    Choi K; Chen Y; Skelly DA; Churchill GA
    Genome Biol; 2020 Jul; 21(1):183. PubMed ID: 32718323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level.
    Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and evaluation of statistical error models for scRNA-seq.
    Choudhary S; Satija R
    Genome Biol; 2022 Jan; 23(1):27. PubMed ID: 35042561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.
    Townes FW; Hicks SC; Aryee MJ; Irizarry RA
    Genome Biol; 2019 Dec; 20(1):295. PubMed ID: 31870412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.