These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35004214)
1. Statistical methods for analysis of single-cell RNA-sequencing data. Das S; Rai SN MethodsX; 2021; 8():101580. PubMed ID: 35004214 [TBL] [Abstract][Full Text] [Related]
2. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data. Das S; Rai SN Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531 [TBL] [Abstract][Full Text] [Related]
3. ZERO-INFLATED QUANTILE RANK-SCORE BASED TEST (ZIQRANK) WITH APPLICATION TO SCRNA-SEQ DIFFERENTIAL GENE EXPRESSION ANALYSIS. Ling W; Zhang W; Cheng B; Wei Y Ann Appl Stat; 2021 Dec; 15(4):1673-1696. PubMed ID: 35116085 [TBL] [Abstract][Full Text] [Related]
4. UMI-count modeling and differential expression analysis for single-cell RNA sequencing. Chen W; Li Y; Easton J; Finkelstein D; Wu G; Chen X Genome Biol; 2018 May; 19(1):70. PubMed ID: 29855333 [TBL] [Abstract][Full Text] [Related]
5. Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data. Yang Z; Ho YY Biometrics; 2022 Jun; 78(2):766-776. PubMed ID: 33720414 [TBL] [Abstract][Full Text] [Related]
6. Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data. Lause J; Berens P; Kobak D Genome Biol; 2021 Sep; 22(1):258. PubMed ID: 34488842 [TBL] [Abstract][Full Text] [Related]
7. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers. Hu Y; Wang K; Li M PLoS Comput Biol; 2020 Jun; 16(6):e1007925. PubMed ID: 32502143 [TBL] [Abstract][Full Text] [Related]
8. Gene length and detection bias in single cell RNA sequencing protocols. Phipson B; Zappia L; Oshlack A F1000Res; 2017; 6():595. PubMed ID: 28529717 [No Abstract] [Full Text] [Related]
9. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications. Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411 [TBL] [Abstract][Full Text] [Related]
10. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data. Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358 [TBL] [Abstract][Full Text] [Related]
11. A machine learning framework for scRNA-seq UMI threshold optimization and accurate classification of cell types. Bishara I; Chen J; Griffiths JI; Bild AH; Nath A Front Genet; 2022; 13():982019. PubMed ID: 36506328 [TBL] [Abstract][Full Text] [Related]
12. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Hafemeister C; Satija R Genome Biol; 2019 Dec; 20(1):296. PubMed ID: 31870423 [TBL] [Abstract][Full Text] [Related]
13. iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects. Liu Y; Zhao J; Adams TS; Wang N; Schupp JC; Wu W; McDonough JE; Chupp GL; Kaminski N; Wang Z; Yan X BMC Bioinformatics; 2023 Aug; 24(1):318. PubMed ID: 37608264 [TBL] [Abstract][Full Text] [Related]
14. scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information. Qi J; Sheng Q; Zhou Y; Hua J; Xiao S; Jin S Cell Biosci; 2022 Sep; 12(1):142. PubMed ID: 36056412 [TBL] [Abstract][Full Text] [Related]
15. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
16. Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics. Choi K; Chen Y; Skelly DA; Churchill GA Genome Biol; 2020 Jul; 21(1):183. PubMed ID: 32718323 [TBL] [Abstract][Full Text] [Related]
17. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Sarkar H; Srivastava A; Patro R Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649 [TBL] [Abstract][Full Text] [Related]
18. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Townes FW; Hicks SC; Aryee MJ; Irizarry RA Genome Biol; 2019 Dec; 20(1):295. PubMed ID: 31870412 [TBL] [Abstract][Full Text] [Related]