These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35004609)

  • 41. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications.
    Li D; Aubertin K; Onidas D; Nizard P; Félidj N; Gazeau F; Mangeney C; Luo Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jul; 14(4):e1795. PubMed ID: 35362261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitive and Direct DNA Mutation Detection by Surface-Enhanced Raman Spectroscopy Using Rational Designed and Tunable Plasmonic Nanostructures.
    Liu Y; Lyu N; Rajendran VK; Piper J; Rodger A; Wang Y
    Anal Chem; 2020 Apr; 92(8):5708-5716. PubMed ID: 32223184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tunable fabrication on iron oxide/Au/Ag nanostructures for surface enhanced Raman spectroscopy and magnetic enrichment.
    Han SY; Guo QH; Xu MM; Yuan YX; Shen LM; Yao JL; Liu W; Gu RA
    J Colloid Interface Sci; 2012 Jul; 378(1):51-7. PubMed ID: 22583528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bimetallic Ag-Cu Alloy SERS Substrates as Label-Free Biomedical Sensors: Femtomolar Detection of Anticancer Drug Mitoxantrone with Multiplexing.
    Kaja S; Mathews AV; Venuganti VVK; Nag A
    Langmuir; 2023 Apr; 39(15):5591-5601. PubMed ID: 37025057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO
    Wen S; Su Y; Wu R; Zhou S; Min Q; Fan GC; Jiang LP; Song RB; Zhu JJ
    Biosens Bioelectron; 2018 Oct; 117():260-266. PubMed ID: 29909197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasensitive detection of thiram based on surface-enhanced Raman scattering
    Wang Y; Liu S; Hu Y; Fu C; Chen W
    Analyst; 2023 Oct; 148(21):5435-5444. PubMed ID: 37750326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silver nanosheets self-assembled on polystyrene microspheres to form "hot spots" with different nanogap distances for high sensitive SERS detection.
    Chen S; Chen L; Zhang Y; Xu D; Hu C; Zhang L; Chen J
    Talanta; 2024 Feb; 268(Pt 1):125370. PubMed ID: 37924804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars.
    Li JJ; Wu C; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():380-387. PubMed ID: 29960240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core-Shell Nanostars.
    Ke Y; Chen B; Hu M; Zhou N; Huang Z; Meng G
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering.
    Rong Z; Xiao R; Wang C; Wang D; Wang S
    Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food.
    Xu S; Li M; Li X; Jiang Y; Yu L; Zhao Y; Wen L; Xue Q
    Anal Bioanal Chem; 2023 Jan; 415(1):203-210. PubMed ID: 36333614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.
    Bi X; Li X; Chen D; Du X
    ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres.
    Indrasekara AS; Thomas R; Fabris L
    Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P; König TAF; Jaiswal A
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.