BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 35004732)

  • 1. Molecular Mechanisms of Proteinuria in Minimal Change Disease.
    Purohit S; Piani F; Ordoñez FA; de Lucas-Collantes C; Bauer C; Cara-Fuentes G
    Front Med (Lausanne); 2021; 8():761600. PubMed ID: 35004732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Idiopathic" minimal change nephrotic syndrome: a podocyte mystery nears the end.
    Chugh SS; Clement LC
    Am J Physiol Renal Physiol; 2023 Dec; 325(6):F685-F694. PubMed ID: 37795536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell biology and genetics of minimal change disease.
    Saleem MA; Kobayashi Y
    F1000Res; 2016; 5():. PubMed ID: 27092244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β1-Integrin blockade prevents podocyte injury in experimental models of minimal change disease.
    Cara-Fuentes G; Verma R; Venkatareddy M; Bauer C; Piani F; Aksoy ST; Vazzalwar N; Garcia GE; Banks M; Ordoñez FA; de Lucas-Collantes C; Bjornstad P; González Rodríguez JD; Johnson RJ; Garg P
    Nefrologia (Engl Ed); 2024; 44(1):90-99. PubMed ID: 37150673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome.
    Clement LC; Avila-Casado C; Macé C; Soria E; Bakker WW; Kersten S; Chugh SS
    Nat Med; 2011 Jan; 17(1):117-22. PubMed ID: 21151138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New insight in pathogenesis of podocyte disfunction in minimal change disease].
    Liu S; Chen J
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):214-8. PubMed ID: 27273997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-associated nephropathy: experimental models.
    Avila-Casado C; Fortoul TI; Chugh SS
    Contrib Nephrol; 2011; 169():270-285. PubMed ID: 21252526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A case of minimal change disease after the administration of anti receptor activator of nuclear factor kappa B ligand (RANKL) monoclonal antibody: a case report.
    Horikoshi K; Sakai N; Yamamoto N; Ogura H; Sato K; Miyagawa T; Kitajima S; Toyama T; Hara A; Iwata Y; Shimizu M; Furuichi K; Wada T
    BMC Nephrol; 2020 Sep; 21(1):416. PubMed ID: 32993539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms.
    Cara-Fuentes G; Clapp WL; Johnson RJ; Garin EH
    Pediatr Nephrol; 2016 Dec; 31(12):2179-2189. PubMed ID: 27384691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle.
    Candelier JJ; Lorenzo HK
    Cell Tissue Res; 2020 Feb; 379(2):231-243. PubMed ID: 31848752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural changes of podocyte foot processes during the remission phase of minimal change disease of human kidney.
    Liu XJ; Zhang YM; Wang SX; Liu G
    Nephrology (Carlton); 2014 Jul; 19(7):392-7. PubMed ID: 24690133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal change disease: a "two-hit" podocyte immune disorder?
    Shimada M; Araya C; Rivard C; Ishimoto T; Johnson RJ; Garin EH
    Pediatr Nephrol; 2011 Apr; 26(4):645-9. PubMed ID: 21052729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and Cellular Mechanisms for Proteinuria in Minimal Change Disease.
    Bertelli R; Bonanni A; Caridi G; Canepa A; Ghiggeri GM
    Front Med (Lausanne); 2018; 5():170. PubMed ID: 29942802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome.
    Ogawa-Akiyama A; Sugiyama H; Kitagawa M; Tanaka K; Kano Y; Mise K; Otaka N; Tanabe K; Morinaga H; Kinomura M; Uchida HA; Wada J
    PLoS One; 2020; 15(1):e0228337. PubMed ID: 31978139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into human minimal change disease: lessons from animal models.
    Chugh SS; Clement LC; Macé C
    Am J Kidney Dis; 2012 Feb; 59(2):284-92. PubMed ID: 21974967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis.
    Meyer-Schwesinger C; Dehde S; Klug P; Becker JU; Mathey S; Arefi K; Balabanov S; Venz S; Endlich KH; Pekna M; Gessner JE; Thaiss F; Meyer TN
    J Immunol; 2011 Sep; 187(6):3218-29. PubMed ID: 21844386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice.
    Jamin A; Berthelot L; Couderc A; Chemouny JM; Boedec E; Dehoux L; Abbad L; Dossier C; Daugas E; Monteiro RC; Deschênes G
    J Autoimmun; 2018 May; 89():149-161. PubMed ID: 29307588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway.
    Shen X; Zhang Y; Lin C; Weng C; Wang Y; Feng S; Wang C; Shao X; Lin W; Li B; Wang H; Chen J; Jiang H
    J Pathol; 2020 Nov; 252(3):227-238. PubMed ID: 32686149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies.
    Zeng C; Fan Y; Wu J; Shi S; Chen Z; Zhong Y; Zhang C; Zen K; Liu Z
    J Pathol; 2014 Oct; 234(2):203-13. PubMed ID: 24870816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ evaluation of podocytes in patients with focal segmental glomerulosclerosis and minimal change disease.
    da Silva CA; Monteiro MLGDR; Araújo LS; Urzedo MG; Rocha LB; Dos Reis MA; Machado JR
    PLoS One; 2020; 15(11):e0241745. PubMed ID: 33147279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.