These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35004863)
1. Modeling a Controlled-Floating Space Robot for In-Space Services: A Beginner's Tutorial. Seddaoui A; Saaj CM; Nair MH Front Robot AI; 2021; 8():725333. PubMed ID: 35004863 [TBL] [Abstract][Full Text] [Related]
2. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation. Hao Z; Shyam RBA; Rathinam A; Gao Y Front Robot AI; 2021; 8():639327. PubMed ID: 34141728 [TBL] [Abstract][Full Text] [Related]
3. Human-like acceleration and deceleration control of a robot astronaut floating in a space station. Shen M; Huang X; Zhao Y; Wang Y; Li H; Jiang Z ISA Trans; 2024 May; 148():397-411. PubMed ID: 38458904 [TBL] [Abstract][Full Text] [Related]
4. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets. Albee K; Oestreich C; Specht C; Terán Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R Front Robot AI; 2021; 8():641338. PubMed ID: 34604314 [TBL] [Abstract][Full Text] [Related]
5. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial. Wilde M; Kwok Choon S; Grompone A; Romano M Front Robot AI; 2018; 5():41. PubMed ID: 33500927 [TBL] [Abstract][Full Text] [Related]
6. Design and Dynamic Control: A Free-Flying Space Robot Inspired by Water Striders. Sai H; Xia C; Xu Z; Li H Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754188 [TBL] [Abstract][Full Text] [Related]
7. Passivity based nonlinear model predictive control (PNMPC) of multi-robot systems for space applications. Kalaycioglu S; De Ruiter A Front Robot AI; 2023; 10():1181128. PubMed ID: 37533425 [TBL] [Abstract][Full Text] [Related]
8. Design engineering a walking robotic manipulator for in-space assembly missions. Nair MH; Rai MC; Poozhiyil M Front Robot AI; 2022; 9():995813. PubMed ID: 36313251 [TBL] [Abstract][Full Text] [Related]
9. Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation. Ashith Shyam RB; Hao Z; Montanaro U; Dixit S; Rathinam A; Gao Y; Neumann G; Fallah S Front Robot AI; 2021; 8():638849. PubMed ID: 34017860 [TBL] [Abstract][Full Text] [Related]
10. Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6 m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment. Nekoo SR; Ollero A ISA Trans; 2023 Nov; 142():635-652. PubMed ID: 37574420 [TBL] [Abstract][Full Text] [Related]
11. Trajectory Generation for Flexible-Joint Space Manipulators. Carabis DS; Wen JT Front Robot AI; 2022; 9():687595. PubMed ID: 35433841 [TBL] [Abstract][Full Text] [Related]
12. Robotic Manipulation and Capture in Space: A Survey. Papadopoulos E; Aghili F; Ma O; Lampariello R Front Robot AI; 2021; 8():686723. PubMed ID: 34350212 [TBL] [Abstract][Full Text] [Related]
13. On-Orbit Robotic Grasping of a Spent Rocket Stage: Grasp Stability Analysis and Experimental Results. Mavrakis N; Hao Z; Gao Y Front Robot AI; 2021; 8():652681. PubMed ID: 34222349 [TBL] [Abstract][Full Text] [Related]
14. Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission. Jaekel S; Lampariello R; Rackl W; De Stefano M; Oumer N; Giordano AM; Porges O; Pietras M; Brunner B; Ratti J; Muehlbauer Q; Thiel M; Estable S; Biesbroek R; Albu-Schaeffer A Front Robot AI; 2018; 5():100. PubMed ID: 33500979 [TBL] [Abstract][Full Text] [Related]
15. A fault-tolerant and robust controller using model predictive path integral control for free-flying space robots. Raisi M; Noohian A; Fallah S Front Robot AI; 2022; 9():1027918. PubMed ID: 36569592 [TBL] [Abstract][Full Text] [Related]
16. Adaptive Fuzzy Integral Sliding Mode Cooperative Control Based on Time-Delay Estimation for Free-Floating Close-Chain Manipulators. Li Z; Zhou Y; Zhu M; Wu Q Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931503 [TBL] [Abstract][Full Text] [Related]
17. Repeated Impact-Based Capture of a Spinning Object by a Dual-Arm Space Robot. Nagaoka K; Kameoka R; Yoshida K Front Robot AI; 2018; 5():115. PubMed ID: 33500994 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Display Modality and Human-in-the-Loop Presence for On-Orbit Inspection of Spacecraft. Weiss H; Liu A; Byon A; Blossom J; Stirling L Hum Factors; 2023 Sep; 65(6):1059-1073. PubMed ID: 34558994 [TBL] [Abstract][Full Text] [Related]
19. Teleoperation and Visualization Interfaces for Remote Intervention in Space. Kazanzides P; Vagvolgyi BP; Pryor W; Deguet A; Leonard S; Whitcomb LL Front Robot AI; 2021; 8():747917. PubMed ID: 34926590 [TBL] [Abstract][Full Text] [Related]
20. Autonomous Planning of Discontinuous Terrain-Dependent Crawling for Space Dobby Robots. Jiang J; Wei C; Yu Y; Sun S Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]