These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35005130)

  • 1. Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health.
    Xia Z; Abu Qahouq JA
    Data Brief; 2022 Feb; 40():107727. PubMed ID: 35005130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective of material evolution Induced by sinusoidal reflex charging in lithium-ion batteries.
    K David H; Chen PT; Yan WM; Sangeetha T; Yang CJ
    Heliyon; 2024 May; 10(10):e30471. PubMed ID: 38765033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental data simulating lithium battery charging and discharging tests under different external constraint pressure conditions.
    Yan C; Wu X; Yuan Y; Xie Y; Wang J; Gao G; Fan Y
    Data Brief; 2024 Aug; 55():110616. PubMed ID: 39006352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-ion battery aging dataset based on electric vehicle real-driving profiles.
    Pozzato G; Allam A; Onori S
    Data Brief; 2022 Apr; 41():107995. PubMed ID: 35252504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation.
    Rashid M; Faraji-Niri M; Sansom J; Sheikh M; Widanage D; Marco J
    Data Brief; 2023 Jun; 48():109157. PubMed ID: 37383794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of Health Prediction of Lithium-Ion Battery Based on Deep Dilated Convolution.
    Fu P; Chu L; Li J; Guo Z; Hu J; Hou Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Battery health evaluation using a short random segment of constant current charging.
    Deng Z; Hu X; Xie Y; Xu L; Li P; Lin X; Bian X
    iScience; 2022 May; 25(5):104260. PubMed ID: 35521525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries.
    Ma G; Xu S; Yang T; Du Z; Zhu L; Ding H; Yuan Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35657842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data from long time testing of 18650 lithium polymer batteries.
    Novak M; Chysky J; Novak L
    Data Brief; 2020 Apr; 29():105137. PubMed ID: 32016145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of dual polarization battery model with high accuracy for a lithium-ion battery cell under dynamic driving cycle conditions.
    Tekin M; Karamangil MI
    Heliyon; 2024 Apr; 10(7):e28454. PubMed ID: 38571645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal charging profiles for mechanically constrained lithium-ion batteries.
    Suthar B; Ramadesigan V; De S; Braatz RD; Subramanian VR
    Phys Chem Chem Phys; 2014 Jan; 16(1):277-87. PubMed ID: 24252870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction.
    Jia J; Yuan S; Shi Y; Wen J; Pang X; Zeng J
    iScience; 2022 Apr; 25(4):103988. PubMed ID: 35310948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset of lithium-ion battery degradation based on a forklift mission profile for state-of-health estimation and lifetime prediction.
    Vilsen SB; Stroe DI
    Data Brief; 2024 Feb; 52():109861. PubMed ID: 38146300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries.
    Naha A; Han S; Agarwal S; Guha A; Khandelwal A; Tagade P; Hariharan KS; Kolake SM; Yoon J; Oh B
    Sci Rep; 2020 Jun; 10(1):9526. PubMed ID: 32533023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis.
    Wang F; Zhai Z; Zhao Z; Di Y; Chen X
    Nat Commun; 2024 May; 15(1):4332. PubMed ID: 38773131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal.
    Wang L; Song Z; Zhu L; Jiang J
    iScience; 2023 Apr; 26(4):106463. PubMed ID: 37091253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Low-Cost Hardware Architecture for EV Battery Cell Characterization Using an IoT-Based Platform.
    Martínez-Sánchez R; Molina-García Á; Ramallo-González AP; Sánchez-Valverde J; Úbeda-Miñarro B
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Performance Degradation in Lithium-Ion Batteries Based on a Lumped Particle Diffusion Model.
    Fang P; Zhang A; Sui X; Wang D; Yin L; Wen Z
    ACS Omega; 2023 Sep; 8(36):32884-32891. PubMed ID: 37720804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.