These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35005130)

  • 21. A fusion framework for lithium-ion batteries state of health estimation using compressed sensing and entropy weight method.
    He N; Qian C; Shen C; Huangfu Y
    ISA Trans; 2023 Apr; 135():585-604. PubMed ID: 36347758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning.
    Zhang Y; Tang Q; Zhang Y; Wang J; Stimming U; Lee AA
    Nat Commun; 2020 Apr; 11(1):1706. PubMed ID: 32249782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient.
    Carter R; Love CT
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26328-26334. PubMed ID: 29999310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-learning based spatio-temporal generative model on assessing state-of-health for Li-ion batteries with partially-cycled profiles.
    Park S; Lee H; Scott-Nevros ZK; Lim D; Seo DH; Choi Y; Lim H; Kim D
    Mater Horiz; 2023 Apr; 10(4):1274-1281. PubMed ID: 36806877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques.
    Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY
    Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge.
    Buchicchio E; De Angelis A; Santoni F; Carbone P; Bianconi F; Smeraldi F
    Data Brief; 2022 Dec; 45():108589. PubMed ID: 36160063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constructing Three-Dimensional Macroporous TiO
    He R; Liu Z; He P; Luo W; Yu R; Hong X; Pan X; Zhou Q; Mai L; Zhou L
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16528-16535. PubMed ID: 33792281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast charging of lithium-ion batteries at all temperatures.
    Yang XG; Zhang G; Ge S; Wang CY
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7266-7271. PubMed ID: 29941558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application.
    Kataoka K; Nagata H; Akimoto J
    Sci Rep; 2018 Jul; 8(1):9965. PubMed ID: 29967436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic Emission Detection and Analysis Method for Health Status of Lithium Ion Batteries.
    Zhang K; Yin J; He Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A disordered rock salt anode for fast-charging lithium-ion batteries.
    Liu H; Zhu Z; Yan Q; Yu S; He X; Chen Y; Zhang R; Ma L; Liu T; Li M; Lin R; Chen Y; Li Y; Xing X; Choi Y; Gao L; Cho HS; An K; Feng J; Kostecki R; Amine K; Wu T; Lu J; Xin HL; Ong SP; Liu P
    Nature; 2020 Sep; 585(7823):63-67. PubMed ID: 32879503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pushing the Eenvelope in Battery Estimation Algorithms.
    Allam A; Catenaro E; Onori S
    iScience; 2020 Dec; 23(12):101847. PubMed ID: 33313491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics.
    Yin A; Tan Z; Tan J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochromic Effect of Indium Tin Oxide in Lithium Iron Phosphate Battery Cathodes for State-of-Charge Determination.
    Roscher V; Rittweger F; Riemschneider KR
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6900-6906. PubMed ID: 30557001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of the critical external heat leading to the failure of lithium-ion batteries.
    Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J
    Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Deep Q-Network for User-Side Battery Energy Storage Charging and Discharging Strategy in Industrial Parks.
    Chen S; Jiang C; Li J; Xiang J; Xiao W
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries.
    Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J
    Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime.
    Qian C; Xu B; Xia Q; Ren Y; Yang D; Wang Z
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.