BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35005645)

  • 1. Quantifying phosphorylation dynamics in primary neuronal cultures using LC-MS/MS.
    Desch K; Schuman EM; Langer JD
    STAR Protoc; 2022 Mar; 3(1):101063. PubMed ID: 35005645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free quantitative proteomic analysis of adult
    Zhang Y; Nezis IP
    STAR Protoc; 2022 Dec; 3(4):101830. PubMed ID: 36386889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organoid Sample Preparation and Extraction for LC-MS Peptidomics.
    Miedzybrodzka EL; Foreman RE; Galvin SG; Larraufie P; George AL; Goldspink DA; Reimann F; Gribble FM; Kay RG
    STAR Protoc; 2020 Dec; 1(3):100164. PubMed ID: 33377058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid preparation of human blood plasma for bottom-up proteomics analysis.
    Shishkova E; Coon JJ
    STAR Protoc; 2021 Dec; 2(4):100856. PubMed ID: 34661170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins.
    Zhang C; Shi Z; Han Y; Ren Y; Hao P
    J Proteome Res; 2019 Jan; 18(1):461-468. PubMed ID: 30394099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of cell-type-specific proteomes of neurodevelopment from human cerebral organoids.
    Melliou S; Diamandis P
    STAR Protoc; 2022 Dec; 3(4):101774. PubMed ID: 36313540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical pulldown combined with mass spectrometry to identify the molecular targets of antimalarials in cell-free lysates.
    Smith RJ; Milne R; Lopez VC; Wiedemar N; Dey G; Syed AJ; Patterson S; Wyllie S
    STAR Protoc; 2023 Mar; 4(1):102002. PubMed ID: 36609153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Phosphorylated Proteins on a Global Scale.
    Iliuk A
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e48. PubMed ID: 29927094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed targeted analysis of polyunsaturated fatty acids and oxylipins using liquid chromatography-tandem mass spectrometry.
    Turtoi E; Jeudy J; Valette G; Enjalbal C; Vila IK; Laguette N; Turtoi A
    STAR Protoc; 2023 Sep; 4(3):102226. PubMed ID: 37597187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimized co-immunoprecipitation protocol for the analysis of endogenous protein-protein interactions in cell lines using mass spectrometry.
    Lagundžin D; Krieger KL; Law HC; Woods NT
    STAR Protoc; 2022 Mar; 3(1):101234. PubMed ID: 35300004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted metabolomics in human and animal biofluids and tissues using liquid chromatography coupled with tandem mass spectrometry.
    Willency JA; Lin Y; Pirro V
    STAR Protoc; 2024 Mar; 5(1):102884. PubMed ID: 38367229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of proteins by label-free LC-MS/MS.
    Levin Y; Bahn S
    Methods Mol Biol; 2010; 658():217-31. PubMed ID: 20839107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites.
    Bauer M; Ahrné E; Baron AP; Glatter T; Fava LL; Santamaria A; Nigg EA; Schmidt A
    J Proteome Res; 2014 Dec; 13(12):5973-88. PubMed ID: 25330945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Proteome Profiling by Isobaric Labeling, Extensive Liquid Chromatography, Mass Spectrometry, and Software-assisted Quantification.
    High AA; Tan H; Pagala VR; Niu M; Cho JH; Wang X; Bai B; Peng J
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Protocol to Simultaneously Study Protein Phosphorylation, Acetylation, and N-Linked Sialylated Glycosylation.
    Melo-Braga MN; Ibáñez-Vea M; Kulej K; Larsen MR
    Methods Mol Biol; 2021; 2261():55-72. PubMed ID: 33420984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of polar primary metabolites in biological samples using targeted metabolomics and LC-MS.
    Turtoi E; Jeudy J; Henry S; Dadi I; Valette G; Enjalbal C; Turtoi A
    STAR Protoc; 2023 Sep; 4(3):102400. PubMed ID: 37590149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.