These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35005844)

  • 1. A Critical Period for Robust Curriculum-Based Deep Reinforcement Learning of Sequential Action in a Robot Arm.
    de Kleijn R; Sen D; Kachergis G
    Top Cogn Sci; 2022 Apr; 14(2):311-326. PubMed ID: 35005844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Movements and Human Reinforcement Learning of Sequential Action.
    de Kleijn R; Kachergis G; Hommel B
    Cogn Sci; 2018 Jun; 42 Suppl 3(Suppl Suppl 3):783-808. PubMed ID: 29498434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning robot differential movements using a new educational robotics simulation tool.
    Gonzalez F
    Educ Inf Technol (Dordr); 2023 Feb; ():1-24. PubMed ID: 36846490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep reinforcement learning in continuous action space for autonomous robotic surgery.
    Shahkoo AA; Abin AA
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):423-431. PubMed ID: 36383302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory Contribution to the Initial Stages of Human Motor Learning.
    Bernardi NF; Darainy M; Ostry DJ
    J Neurosci; 2015 Oct; 35(42):14316-26. PubMed ID: 26490869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy-Aware Model Initialization for Effective Exploration in Deep Reinforcement Learning.
    Jang S; Kim HI
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. End-to-End Hierarchical Reinforcement Learning With Integrated Subgoal Discovery.
    Pateria S; Subagdja B; Tan AH; Quek C
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7778-7790. PubMed ID: 34156954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.