These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35005844)

  • 21. Cooperative Object Transportation Using Curriculum-Based Deep Reinforcement Learning.
    Eoh G; Park TH
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement Signaling Can Be Used to Reduce Elements of Cerebellar Reaching Ataxia.
    Therrien AS; Statton MA; Bastian AJ
    Cerebellum; 2021 Feb; 20(1):62-73. PubMed ID: 32880848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encoding primitives generation policy learning for robotic arm to overcome catastrophic forgetting in sequential multi-tasks learning.
    Xiong F; Liu Z; Huang K; Yang X; Qiao H; Hussain A
    Neural Netw; 2020 Sep; 129():163-173. PubMed ID: 32535306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.
    Sampson P; Freeman C; Coote S; Demain S; Feys P; Meadmore K; Hughes AM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):235-48. PubMed ID: 25823038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Task space exploration improves adaptation after incompatible virtual surgeries.
    Berger DJ; Borzelli D; d'Avella A
    J Neurophysiol; 2022 Apr; 127(4):1127-1146. PubMed ID: 35320031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of Reinforcement Learning in a Virtual Robotic Surgical Simulation.
    Bourdillon AT; Garg A; Wang H; Woo YJ; Pavone M; Boyd J
    Surg Innov; 2023 Feb; 30(1):94-102. PubMed ID: 35503302
    [No Abstract]   [Full Text] [Related]  

  • 30. Perceptual learning in sensorimotor adaptation.
    Darainy M; Vahdat S; Ostry DJ
    J Neurophysiol; 2013 Nov; 110(9):2152-62. PubMed ID: 23966671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acquisition and extinction of operant pain-related avoidance behavior using a 3 degrees-of-freedom robotic arm.
    Meulders A; Franssen M; Fonteyne R; Vlaeyen JWS
    Pain; 2016 May; 157(5):1094-1104. PubMed ID: 26761388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curriculum learning with Hindsight Experience Replay for sequential object manipulation tasks.
    Manela B; Biess A
    Neural Netw; 2022 Jan; 145():260-270. PubMed ID: 34781214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Paced Prioritized Curriculum Learning With Coverage Penalty in Deep Reinforcement Learning.
    Ren Z; Dong D; Li H; Chen C; Zhipeng Ren ; Daoyi Dong ; Huaxiong Li ; Chunlin Chen ; Dong D; Li H; Chen C; Ren Z
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2216-2226. PubMed ID: 29771673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Back to reality: differences in learning strategy in a simplified virtual and a real throwing task.
    Zhang Z; Sternad D
    J Neurophysiol; 2021 Jan; 125(1):43-62. PubMed ID: 33146063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What determines the impact of context on sequential action?
    Ruitenberg MF; Verwey WB; Abrahamse EL
    Hum Mov Sci; 2015 Apr; 40():298-314. PubMed ID: 25638649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces.
    Elfwing S; Uchibe E; Doya K
    Front Neurorobot; 2013; 7():3. PubMed ID: 23450126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Curriculum Reinforcement Learning Based on K-Fold Cross Validation.
    Lin Z; Lai J; Chen X; Cao L; Wang J
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.