These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35005907)

  • 1. Extraction and Quantification of Nanoparticulate Mercury in Natural Soils.
    Cai W; Wang Y; Feng Y; Liu P; Dong S; Meng B; Gong H; Dang F
    Environ Sci Technol; 2022 Feb; 56(3):1763-1770. PubMed ID: 35005907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient.
    Liu J; Lu B; Poulain AJ; Zhang R; Zhang T; Feng X; Meng B
    Environ Pollut; 2022 Jan; 292(Pt A):118321. PubMed ID: 34634402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine.
    Li WC; Ouyang Y; Ye ZH
    Environ Toxicol Chem; 2014 Nov; 33(11):2438-47. PubMed ID: 25087518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination.
    Kulikova T; Hiller E; Jurkovič Ľ; Filová L; Šottník P; Lacina P
    Environ Monit Assess; 2019 Apr; 191(5):263. PubMed ID: 30953219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly deposited atmospheric mercury in a simulated rice ecosystem in an active mercury mining region: High loading, accumulation, and availability.
    Ao M; Xu X; Wu Y; Zhang C; Meng B; Shang L; Liang L; Qiu R; Wang S; Qian X; Zhao L; Qiu G
    Chemosphere; 2020 Jan; 238():124630. PubMed ID: 31473530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
    Horvat M; Nolde N; Fajon V; Jereb V; Logar M; Lojen S; Jacimovic R; Falnoga I; Liya Q; Faganeli J; Drobne D
    Sci Total Environ; 2003 Mar; 304(1-3):231-56. PubMed ID: 12663187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics, speciation, and bioavailability of mercury and methylmercury impacted by an abandoned coal gangue in southwestern China.
    Liang L; Xu X; Han J; Xu Z; Wu P; Guo J; Qiu G
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37001-37011. PubMed ID: 31745793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies.
    Li H; Li Y; Tang W; Liu Y; Zheng L; Xu N; Li YF; Xu D; Gao Y; Zhao J
    J Hazard Mater; 2022 Feb; 424(Pt B):127394. PubMed ID: 34628266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia.
    Tomiyasu T; Kodamatani H; Hamada YK; Matsuyama A; Imura R; Taniguchi Y; Hidayati N; Rahajoe JS
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2643-2652. PubMed ID: 27830415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems.
    Álvarez CR; Jiménez-Moreno M; Bernardo FJG; Martín-Doimeadios RCR; Nevado JJB
    Ecotoxicol Environ Saf; 2018 Jan; 147():192-199. PubMed ID: 28843190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury distribution in the soil-plant-air system at the Wanshan mercury mining district in Guizhou, Southwest China.
    Wang J; Feng X; Anderson CW; Zhu W; Yin R; Wang H
    Environ Toxicol Chem; 2011 Dec; 30(12):2725-31. PubMed ID: 21935979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Bioavailability of Mercury Sulfides in Paddy Soils Using Sodium Thiosulfate Extraction - Results from Microcosm Experiments.
    Li H; Li Y; Tang W; Zhong H; Zhao J; Bai X; Sha S; Xu D; Lei P; Gao Y
    Bull Environ Contam Toxicol; 2022 Nov; 109(5):764-770. PubMed ID: 35305130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of mercury-containing nanoparticles in the liver and muscle of cetaceans.
    Ji X; Yang L; Wu F; Yao L; Yu B; Liu X; Yin Y; Hu L; Qu G; Fu J; Yang R; Wang X; Shi J; Jiang G
    J Hazard Mater; 2022 Feb; 424(Pt D):127759. PubMed ID: 34801316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characteristics and predictive models of methylmercury production in paddy soils.
    Du S; Wang X; Zhang T; Ding C
    Environ Pollut; 2019 Oct; 253():424-428. PubMed ID: 31325887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential.
    Xu J; Bland GD; Gu Y; Ziaei H; Xiao X; Deonarine A; Reible D; Bireta P; Hoelen TP; Lowry GV
    Environ Sci Technol; 2021 Sep; 55(18):12393-12402. PubMed ID: 34505768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine.
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio I
    Environ Sci Process Impacts; 2014 May; 16(5):1069-75. PubMed ID: 24664209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).
    Protano G; Nannoni F
    Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation.
    Qian X; Wu Y; Zhou H; Xu X; Xu Z; Shang L; Qiu G
    Environ Pollut; 2018 Aug; 239():757-767. PubMed ID: 29729617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal lattice defects in nanocrystalline metacinnabar in contaminated streambank soils suggest a role for biogenic sulfides in the formation of mercury sulfide phases.
    Koenigsmark F; Chiu M; Rivera N; Johs A; Eskelsen J; Leonard D; Robertson BK; Szynkiewicz A; Derolph C; Zhao L; Gu B; Hsu-Kim H; Pierce EM
    Environ Sci Process Impacts; 2023 Mar; 25(3):445-460. PubMed ID: 36692344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.