These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35005920)

  • 1. Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings.
    Babi M; Riesco R; Boyer L; Fatona A; Accardo A; Malaquin L; Moran-Mirabal J
    ACS Appl Bio Mater; 2021 Dec; 4(12):8443-8455. PubMed ID: 35005920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture.
    Miksch CE; Skillin NP; Kirkpatrick BE; Hach GK; Rao VV; White TJ; Anseth KS
    Small; 2022 Sep; 18(36):e2200951. PubMed ID: 35732614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of hydrogel-based biomimetic microenvironments.
    Luo Y; Wei X; Huang P
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering.
    Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review.
    He X; Lu Q
    Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an
    Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D
    ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications.
    Khalid MY; Arif ZU; Noroozi R; Hossain M; Ramakrishna S; Umer R
    Int J Biol Macromol; 2023 Nov; 251():126287. PubMed ID: 37573913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery.
    Patel DK; Dutta SD; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Feb; 170():178-188. PubMed ID: 33359257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites.
    Groetsch A; Stelzl S; Nagel Y; Kochetkova T; Scherrer NC; Ovsianikov A; Michler J; Pethö L; Siqueira G; Nyström G; Schwiedrzik J
    Small; 2023 Jan; 19(3):e2202470. PubMed ID: 36449596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.