These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35006215)

  • 1. A colorimetric sensor array for rapid discrimination of edible oil species based on a halogen ion exchange reaction between CsPbBr
    Zhang X; Feng X; Zhou LL; Liu B; Chen Z; Zuo X
    Analyst; 2022 Jan; 147(3):404-409. PubMed ID: 35006215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-Shift-Based Colorimetric Sensing for Peroxide Number of Edible Oil Using CsPbBr
    Zhu Y; Li F; Huang Y; Lin F; Chen X
    Anal Chem; 2019 Nov; 91(22):14183-14187. PubMed ID: 31441299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lead-based room-temperature phosphorescent metal-organic framework sensor for assessing the peroxide value of edible oils.
    Wu Z; Wei J; Jiao T; Chen Q; Oyama M; Chen Q; Chen X
    Food Chem; 2022 Aug; 385():132710. PubMed ID: 35313194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric determination of peroxide value in vegetable oils using a paper based analytical device.
    Ghohestani E; Tashkhourian J; Hemmateenejad B
    Food Chem; 2023 Mar; 403():134345. PubMed ID: 36174343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for qualitative analysis of edible oil oxidation using an electronic nose.
    Xu L; Yu X; Liu L; Zhang R
    Food Chem; 2016 Jul; 202():229-35. PubMed ID: 26920289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polyamidoamine-mediated competitive colorimetric assay based on gold nanoparticles for determining acid values in edible sunflower seed, corn and extra virgin olive oils.
    Guo Y; Liang X; Bi J; Ling R; Jiang Y; Mou Z; Huang F; Qin W
    Food Chem; 2019 Jul; 285():450-457. PubMed ID: 30797369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Spectroscopic Techniques for Determining the Peroxide Value of 19 Classes of Naturally Aged, Plant-Based Edible Oils.
    Ottaway JM; Chance Carter J; Adams KL; Camancho J; Lavine BK; Booksh KS
    Appl Spectrosc; 2021 Jul; 75(7):781-794. PubMed ID: 33522275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of 2-tert-butyl-1,4-benzoquinone in edible oils based on a chromogenic reaction with commercial chemicals.
    Dong B; Qu H; Yan L; Liu C; Mao Y; Zheng L
    Food Chem; 2023 Jan; 400():134037. PubMed ID: 36055146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric peroxide test method for determining vegetable oil stability.
    GOLDEN MJ
    J Am Pharm Assoc Am Pharm Assoc; 1953 Sep; 42(9):545-7. PubMed ID: 13084467
    [No Abstract]   [Full Text] [Related]  

  • 10. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.
    Zhang L; Shuai Q; Li P; Zhang Q; Ma F; Zhang W; Ding X
    Food Chem; 2016 Feb; 192():60-6. PubMed ID: 26304320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles.
    Zhang J; Xu X; Yang C; Yang F; Yang X
    Anal Chem; 2011 May; 83(10):3911-7. PubMed ID: 21449559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a colorimetric sensor array based on the coupling reaction to identify phenols.
    Zhong H; Xue Y; Liu B; Chen Z; Li K; Zuo X
    Anal Methods; 2022 Mar; 14(9):892-899. PubMed ID: 35171157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy.
    Du S; Su M; Jiang Y; Yu F; Xu Y; Lou X; Yu T; Liu H
    ACS Sens; 2019 Jul; 4(7):1798-1805. PubMed ID: 31251024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant identification using a colorimetric sensor array based on Co-N-C nanozyme.
    Liu B; Xue Y; Gao Z; Tang K; Wang G; Chen Z; Zuo X
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112060. PubMed ID: 34450512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A colorimetric sensor array for detection and discrimination of antioxidants based on Ag nanoshell deposition on gold nanoparticle surfaces.
    Li Y; Liu Q; Chen Z
    Analyst; 2019 Oct; 144(21):6276-6282. PubMed ID: 31580334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel profuse color card for convenient visual determination of iodide in human urine based on catalytic oxidation reaction.
    Ren D; Mei J; Bao J; Wei F; Xu G; Yang J; Sun Y; Hu Q; Cen Y
    J Pharm Biomed Anal; 2020 Nov; 191():113580. PubMed ID: 32916562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of rice wine according to different marked ages using a novel artificial olfactory technique based on colorimetric sensor array.
    Ouyang Q; Zhao J; Chen Q; Lin H
    Food Chem; 2013 Jun; 138(2-3):1320-4. PubMed ID: 23411249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical methods for determining the peroxide value of edible oils: A mini-review.
    Zhang N; Li Y; Wen S; Sun Y; Chen J; Gao Y; Sagymbek A; Yu X
    Food Chem; 2021 Oct; 358():129834. PubMed ID: 33933972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system.
    Liu MM; Lian X; Liu H; Guo ZZ; Huang HH; Lei Y; Peng HP; Chen W; Lin XH; Liu AL; Xia XH
    Talanta; 2019 Aug; 200():511-517. PubMed ID: 31036217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent fingerprints of edible oils and biodiesel by means total synchronous fluorescence and Tucker3 modeling.
    Insausti M; de Araújo Gomes A; Camiña JM; de Araújo MC; Band BS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():185-190. PubMed ID: 28039846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.