BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 35006395)

  • 1. Cancer non-stem cells as a potent regulator of tumor microenvironment: a lesson from chronic myeloid leukemia.
    Mukaida N; Tanabe Y; Baba T
    Mol Biomed; 2021 Mar; 2(1):7. PubMed ID: 35006395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of histidine decarboxylase activity and cytokine synthesis in human leukemic cell lines: relationship with basophilic and/or megakaryocytic differentiation.
    Dy M; Pacilio M; Arnould A; Machavoine F; Mayeux P; Hermine O; Bodger M; Schneider E
    Exp Hematol; 1999 Aug; 27(8):1295-305. PubMed ID: 10428506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIP-1α/CCL3-expressing basophil-lineage cells drive the leukemic hematopoiesis of chronic myeloid leukemia in mice.
    Baba T; Tanabe Y; Yoshikawa S; Yamanishi Y; Morishita S; Komatsu N; Karasuyama H; Hirao A; Mukaida N
    Blood; 2016 May; 127(21):2607-17. PubMed ID: 27006388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia.
    Sachs K; Sarver AL; Noble-Orcutt KE; LaRue RS; Antony ML; Chang D; Lee Y; Navis CM; Hillesheim AL; Nykaza IR; Ha NA; Hansen CJ; Karadag FK; Bergerson RJ; Verneris MR; Meredith MM; Schomaker ML; Linden MA; Myers CL; Largaespada DA; Sachs Z
    Cancer Res; 2020 Feb; 80(3):458-470. PubMed ID: 31784425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia.
    Sato T; Goyama S; Kataoka K; Nasu R; Tsuruta-Kishino T; Kagoya Y; Nukina A; Kumagai K; Kubota N; Nakagawa M; Arai S; Yoshimi A; Honda H; Kadowaki T; Kurokawa M
    Oncogene; 2014 Oct; 33(42):5028-38. PubMed ID: 24747972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basophils in Tumor Microenvironment and Surroundings.
    Marone G; Gambardella AR; Mattei F; Mancini J; Schiavoni G; Varricchi G
    Adv Exp Med Biol; 2020; 1224():21-34. PubMed ID: 32036602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer stem cells--new approach to cancerogenensis and treatment.
    Macingová Z; Filip S
    Acta Medica (Hradec Kralove); 2008; 51(3):139-44. PubMed ID: 19271680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukemia cells impair normal hematopoiesis and induce functionally loss of hematopoietic stem cells through immune cells and inflammation.
    Cui P; Zhang Y; Cui M; Li Z; Ma G; Wang R; Wang N; Huang S; Gao J
    Leuk Res; 2018 Feb; 65():49-54. PubMed ID: 29306107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting BMP signaling in the bone marrow microenvironment of myeloid leukemia.
    Lefort S; Maguer-Satta V
    Biochem Soc Trans; 2020 Apr; 48(2):411-418. PubMed ID: 32167132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia.
    Mukaida N; Tanabe Y; Baba T
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28829353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells.
    Park CS; Lacorazza HD
    Exp Mol Med; 2020 Oct; 52(10):1663-1672. PubMed ID: 33067577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15.
    Gao S; Zhou B; Li H; Huang X; Wu Y; Xing C; Yu X; Ji Y
    Exp Hematol; 2018 Nov; 67():32-40.e3. PubMed ID: 30172749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.
    Hope KJ; Jin L; Dick JE
    Nat Immunol; 2004 Jul; 5(7):738-43. PubMed ID: 15170211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of embryonic stem cell markers in acute myeloid leukemia.
    Picot T; Aanei CM; Fayard A; Flandrin-Gresta P; Tondeur S; Gouttenoire M; Tavernier-Tardy E; Wattel E; Guyotat D; Campos L
    Tumour Biol; 2017 Jul; 39(7):1010428317716629. PubMed ID: 28718379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer Stem Cells in the Immune Microenvironment.
    Lee DS; Oh K
    Adv Exp Med Biol; 2021; 1187():245-266. PubMed ID: 33983582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukemia stem cells and human acute lymphoblastic leukemia.
    Bernt KM; Armstrong SA
    Semin Hematol; 2009 Jan; 46(1):33-8. PubMed ID: 19100366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis.
    Kataoka K; Kurokawa M
    Cancer Sci; 2012 Aug; 103(8):1371-7. PubMed ID: 22494115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells.
    Carlsten M; Järås M
    Front Immunol; 2019; 10():2357. PubMed ID: 31681270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells.
    Glait-Santar C; Desmond R; Feng X; Bat T; Chen J; Heuston E; Mizukawa B; Mulloy JC; Bodine DM; Larochelle A; Dunbar CE
    Stem Cells; 2015 Dec; 33(12):3635-42. PubMed ID: 26388434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia.
    Valent P; Agis H; Sperr W; Sillaber C; Horny HP
    Leuk Lymphoma; 2008 Apr; 49(4):635-8. PubMed ID: 18398724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.