These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35006745)

  • 1. Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning.
    Uribe-Gomez J; Posada-Murcia A; Shukla A; Alkhamis H; Salehi S; Ionov L
    ACS Appl Bio Mater; 2021 Jul; 4(7):5585-5597. PubMed ID: 35006745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrous Scaffolds for Muscle Tissue Engineering Based on Touch-Spun Poly(Ester-Urethane) Elastomer.
    Uribe-Gomez J; Schönfeld D; Posada-Murcia A; Roland MM; Caspari A; Synytska A; Salehi S; Pretsch T; Ionov L
    Macromol Biosci; 2022 Apr; 22(4):e2100427. PubMed ID: 35007398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration.
    Uribe-Gomez J; Posada-Murcia A; Shukla A; Ergin M; Constante G; Apsite I; Martin D; Schwarzer M; Caspari A; Synytska A; Salehi S; Ionov L
    ACS Appl Bio Mater; 2021 Feb; 4(2):1720-1730. PubMed ID: 35014518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering.
    Ergene E; Yagci BS; Gokyer S; Eyidogan A; Aksoy EA; Yilgor Huri P
    Biomed Mater; 2019 Feb; 14(2):025014. PubMed ID: 30665203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells.
    Hu Q; Su C; Zeng Z; Zhang H; Feng R; Feng J; Li S
    J Biomater Appl; 2020; 35(4-5):553-566. PubMed ID: 32611277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering.
    Mi HY; Jing X; Napiwocki BN; Hagerty BS; Chen G; Turng LS
    J Mater Chem B; 2017 Jun; 5(22):4137-4151. PubMed ID: 29170715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.
    Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration.
    Hasmad H; Yusof MR; Mohd Razi ZR; Hj Idrus RB; Chowdhury SR
    Tissue Eng Part C Methods; 2018 Jun; 24(6):368-378. PubMed ID: 29690856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay.
    Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S
    Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications.
    Jiang L; Jiang Y; Stiadle J; Wang X; Wang L; Li Q; Shen C; Thibeault SL; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():740-749. PubMed ID: 30423760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration.
    Konuk Tokak E; Çetin Altındal D; Akdere ÖE; Gümüşderelioğlu M
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112528. PubMed ID: 34857307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties.
    Ma Z; Hong Y; Nelson DM; Pichamuthu JE; Leeson CE; Wagner WR
    Biomacromolecules; 2011 Sep; 12(9):3265-74. PubMed ID: 21755999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin-modified polyurethanes for soft tissue scaffold.
    Kucińska-Lipka J; Gubańska I; Janik H
    ScientificWorldJournal; 2013; 2013():450132. PubMed ID: 24363617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
    Trinca RB; Abraham GA; Felisberti MI
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Blow-Spun Polyurethane Scaffolds-Influence of Fiber Alignment and Fiber Diameter on Pericyte Growth.
    Łopianiak I; Kawecka A; Civelek M; Wojasiński M; Cicha I; Ciach T; Butruk-Raszeja BA
    ACS Biomater Sci Eng; 2024 Jul; 10(7):4388-4399. PubMed ID: 38856968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers.
    Coenen AMJ; Bernaerts KV; Harings JAW; Jockenhoevel S; Ghazanfari S
    Acta Biomater; 2018 Oct; 79():60-82. PubMed ID: 30165203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.