These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35006782)
1. PDMS-Parylene Hybrid, Flexible Micro-ECoG Electrode Array for Spatiotemporal Mapping of Epileptic Electrophysiological Activity from Multicortical Brain Regions. Li X; Song Y; Xiao G; He E; Xie J; Dai Y; Xing Y; Wang Y; Wang Y; Xu S; Wang M; Tao TH; Cai X ACS Appl Bio Mater; 2021 Nov; 4(11):8013-8022. PubMed ID: 35006782 [TBL] [Abstract][Full Text] [Related]
2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
3. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
4. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array. Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065 [TBL] [Abstract][Full Text] [Related]
5. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film. Kim Y; Alimperti S; Choi P; Noh M Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023 [TBL] [Abstract][Full Text] [Related]
6. Flexible Electrocorticography Electrode Array for Epileptiform Electrical Activity Recording under Glutamate and GABA Modulation on the Primary Somatosensory Cortex of Rats. Li X; Song Y; Xiao G; Xie J; Dai Y; Xing Y; He E; Wang Y; Xu S; Zhang L; Yu D; Tao TH; Cai X Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751055 [TBL] [Abstract][Full Text] [Related]
7. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Akamine IR; Garich JV; Gulick DW; Hara SA; Benscoter MA; Kuehn ST; Worrell GA; Raupp GB; Blain Christen JM Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38744259 [No Abstract] [Full Text] [Related]
8. A hybrid PDMS-Parylene subdural multi-electrode array. Ochoa M; Wei P; Wolley AJ; Otto KJ; Ziaie B Biomed Microdevices; 2013 Jun; 15(3):437-43. PubMed ID: 23334754 [TBL] [Abstract][Full Text] [Related]
9. Cortical Electrocorticogram (ECoG) Is a Local Signal. Dubey A; Ray S J Neurosci; 2019 May; 39(22):4299-4311. PubMed ID: 30914446 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Toda H; Suzuki T; Sawahata H; Majima K; Kamitani Y; Hasegawa I Neuroimage; 2011 Jan; 54(1):203-12. PubMed ID: 20696254 [TBL] [Abstract][Full Text] [Related]
11. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Jeong J; Chou N; Kim S Biomed Microdevices; 2016 Jun; 18(3):42. PubMed ID: 27165102 [TBL] [Abstract][Full Text] [Related]
12. Polydimethylsiloxane (PDMS)-Based Flexible Optical Electrodes with Conductive Composite Hydrogels Integrated Probe for Optogenetics. Zhao Y; Wang K; Li S; Zhang P; Shen Y; Fu Y; Zhang Y; Zhou J; Wang C J Biomed Nanotechnol; 2018 Jun; 14(6):1099-1106. PubMed ID: 29843874 [TBL] [Abstract][Full Text] [Related]
13. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays. Kaiju T; Doi K; Yokota M; Watanabe K; Inoue M; Ando H; Takahashi K; Yoshida F; Hirata M; Suzuki T Front Neural Circuits; 2017; 11():20. PubMed ID: 28442997 [TBL] [Abstract][Full Text] [Related]
16. A Low Contact Impedance Medical Flexible Electrode Based on a Pyramid Array Micro-Structure. Wang S; Yan J; Zhu C; Yao J; Liu Q; Yang X Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906344 [TBL] [Abstract][Full Text] [Related]
17. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526 [TBL] [Abstract][Full Text] [Related]
18. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface. Tian P; Yi W; Chen C; Hu J; Qi J; Zhang B; Cheng MM Biomed Microdevices; 2018 Feb; 20(1):21. PubMed ID: 29460230 [TBL] [Abstract][Full Text] [Related]
19. Electric cortical stimulation suppresses epileptic and background activities in neocortical epilepsy and mesial temporal lobe epilepsy. Kinoshita M; Ikeda A; Matsuhashi M; Matsumoto R; Hitomi T; Begum T; Usui K; Takayama M; Mikuni N; Miyamoto S; Hashimoto N; Shibasaki H Clin Neurophysiol; 2005 Jun; 116(6):1291-9. PubMed ID: 15978492 [TBL] [Abstract][Full Text] [Related]
20. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain. Xu K; Li S; Dong S; Zhang S; Pan G; Wang G; Shi L; Guo W; Yu C; Luo J Adv Healthc Mater; 2019 Aug; 8(15):e1801649. PubMed ID: 31168937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]