These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 35006786)
1. Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration. Liu S; Li Z; Wang Q; Han J; Wang W; Li S; Liu H; Guo S; Zhang J; Ge K; Zhou G ACS Appl Bio Mater; 2021 Nov; 4(11):8049-8059. PubMed ID: 35006786 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
3. Reinforced chitosan membranes by microspheres for guided bone regeneration. Huang D; Niu L; Li J; Du J; Wei Y; Hu Y; Lian X; Chen W; Wang K J Mech Behav Biomed Mater; 2018 May; 81():195-201. PubMed ID: 29529590 [TBL] [Abstract][Full Text] [Related]
4. [Mechanical properties and cell compatibility of a chitosan-graphene oxide guided bone regeneration composite membrane]. Zhang KR; Xu R; Zou DH Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 May; 54(5):322-327. PubMed ID: 31091565 [No Abstract] [Full Text] [Related]
5. Three-dimensional porous reduced graphene oxide/hydroxyapatite membrane for guided bone regeneration. Liu W; Dong X; Qin H; Sui L; Wang J Colloids Surf B Biointerfaces; 2021 Dec; 208():112102. PubMed ID: 34509086 [TBL] [Abstract][Full Text] [Related]
6. The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration. Jabbari F; Hesaraki S; Houshmand B J Biomater Sci Polym Ed; 2019 Dec; 30(18):1779-1802. PubMed ID: 31506050 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic Mineralized Hydroxyapatite-Fish-Scale Collagen/Chitosan Nanofibrous Membranes Promote Osteogenesis for Periodontal Tissue Regeneration. Li M; Cheng G; Xiao S; Jiang B; Guo S; Ding Y ACS Biomater Sci Eng; 2024 Aug; 10(8):5108-5121. PubMed ID: 38996181 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic cuttlebone polyvinyl alcohol/carbon nanotubes/hydroxyapatite aerogel scaffolds enhanced bone regeneration. Liu S; Li D; Chen X; Jiang L Colloids Surf B Biointerfaces; 2022 Feb; 210():112221. PubMed ID: 34838414 [TBL] [Abstract][Full Text] [Related]
9. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Lai GJ; Shalumon KT; Chen JP Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962 [TBL] [Abstract][Full Text] [Related]
10. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related]
11. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Fang J; Li P; Lu X; Fang L; Lü X; Ren F Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515 [TBL] [Abstract][Full Text] [Related]
12. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Sun TW; Yu WL; Zhu YJ; Chen F; Zhang YG; Jiang YY; He YH Chemistry; 2018 Jun; 24(35):8809-8821. PubMed ID: 29655312 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Tu Y; Chen C; Li Y; Hou Y; Huang M; Zhang L Biomed Mater Eng; 2017; 28(3):223-233. PubMed ID: 28527186 [TBL] [Abstract][Full Text] [Related]
14. Preparation and biological properties of ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin biomimetic composite scaffolds for bone tissue engineering. Lu X; Liu L; Feng S; Pan J; Li C; Zheng Y J Biomater Appl; 2022 Aug; 37(2):238-248. PubMed ID: 35487772 [TBL] [Abstract][Full Text] [Related]
15. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Yu P; Bao RY; Shi XJ; Yang W; Yang MB Carbohydr Polym; 2017 Jan; 155():507-515. PubMed ID: 27702542 [TBL] [Abstract][Full Text] [Related]
16. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Ou L; Lan Y; Feng Z; Feng L; Yang J; Liu Y; Bian L; Tan J; Lai R; Guo R Theranostics; 2019; 9(15):4525-4541. PubMed ID: 31285777 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications. Xie C; Lu X; Han L; Xu J; Wang Z; Jiang L; Wang K; Zhang H; Ren F; Tang Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):1707-17. PubMed ID: 26710937 [TBL] [Abstract][Full Text] [Related]
19. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
20. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. Wu G; Deng X; Song J; Chen F J Photochem Photobiol B; 2018 Jan; 178():27-32. PubMed ID: 29101870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]