These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 35006852)
1. Tunable NIR Absorption Property of a Dithiolene Nickel Complex: A Promising NIR-II Absorption Material for Photothermal Therapy. Chen K; Fang W; Zhang Q; Jiang X; Chen Y; Xu W; Shen Q; Sun P; Huang W ACS Appl Bio Mater; 2021 May; 4(5):4406-4412. PubMed ID: 35006852 [TBL] [Abstract][Full Text] [Related]
2. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene)-Containing Liposomes. Mebrouk K; Ciancone M; Vives T; Cammas-Marion S; Benvegnu T; Le Goff-Gaillard C; Arlot-Bonnemains Y; Fourmigué M; Camerel F ChemMedChem; 2017 Nov; 12(21):1753-1758. PubMed ID: 28902984 [TBL] [Abstract][Full Text] [Related]
3. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. Cai Y; Tang C; Wei Z; Song C; Zou H; Zhang G; Ran J; Han W ACS Appl Bio Mater; 2021 Feb; 4(2):1942-1949. PubMed ID: 35014463 [TBL] [Abstract][Full Text] [Related]
4. Investigations of the Photothermal Properties of a Series of Molecular Gold-bis(dithiolene) Complexes Absorbing in the NIR-III Region. Pluta JB; Guechaichia R; Vacher A; Bellec N; Cammas-Marion S; Camerel F Chemistry; 2023 Sep; 29(54):e202301789. PubMed ID: 37417949 [TBL] [Abstract][Full Text] [Related]
5. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. Zhu H; Li Z; Ye E; Leong DT ACS Appl Mater Interfaces; 2021 Dec; 13(50):60351-60361. PubMed ID: 34874695 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible nanoparticles containing hydrophobic nickel-bis(dithiolene) complexes for NIR-mediated doxorubicin release and photothermal therapy. Ciancone M; Mebrouk K; Bellec N; Le Goff-Gaillard C; Arlot-Bonnemains Y; Benvegnu T; Fourmigué M; Camerel F; Cammas-Marion S J Mater Chem B; 2018 Mar; 6(12):1744-1753. PubMed ID: 32254246 [TBL] [Abstract][Full Text] [Related]
7. Mitochondria-Targeted BODIPY Nanoparticles for Enhanced Photothermal and Photoacoustic Imaging In Vivo. Wang JL; Zhang L; Zhao MJ; Zhang T; Liu Y; Jiang FL ACS Appl Bio Mater; 2021 Feb; 4(2):1760-1770. PubMed ID: 35014522 [TBL] [Abstract][Full Text] [Related]
8. BF Yang M; Ou X; Li J; Sun J; Zhao Z; Lam JWY; Fan J; Tang BZ Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407307. PubMed ID: 38868977 [TBL] [Abstract][Full Text] [Related]
9. A Borondifluoride-Complex-Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR-II Window. Jiang Z; Zhang C; Wang X; Yan M; Ling Z; Chen Y; Liu Z Angew Chem Int Ed Engl; 2021 Oct; 60(41):22376-22384. PubMed ID: 34289230 [TBL] [Abstract][Full Text] [Related]
10. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. Fan K; Zhang L; Zhong Q; Xiang Y; Xu B; Wang Y J Mater Chem B; 2024 May; 12(21):5140-5149. PubMed ID: 38712564 [TBL] [Abstract][Full Text] [Related]
11. Liposomes Containing Nickel-Bis(dithiolene) Complexes for Photothermal Theranostics. Ciancone M; Bellec N; Cammas-Marion S; Dolet A; Vray D; Varray F; Le Goff-Gaillard C; Le Goff X; Arlot-Bonnemains Y; Camerel F Langmuir; 2019 Nov; 35(47):15121-15130. PubMed ID: 31682444 [TBL] [Abstract][Full Text] [Related]
12. Photothermal control of the gelation properties of nickel bis(dithiolene) metallogelators under near-infrared irradiation. Mebrouk K; Debnath S; Fourmigué M; Camerel F Langmuir; 2014 Jul; 30(28):8592-7. PubMed ID: 24972018 [TBL] [Abstract][Full Text] [Related]
13. J-aggregates of multi-groups cyanine dye for NIR-IIa fluorescence-guided mild photothermal therapy under 1064 nm irradiation. Teng C; Xu Y; Wang Y; Chen D; Yin D; Yan L J Colloid Interface Sci; 2024 Sep; 670():751-761. PubMed ID: 38788442 [TBL] [Abstract][Full Text] [Related]
14. One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity. Guo B; Zhao J; Wu C; Zheng Y; Ye C; Huang M; Wang S Colloids Surf B Biointerfaces; 2019 May; 177():346-355. PubMed ID: 30772669 [TBL] [Abstract][Full Text] [Related]
16. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Chen G; Xiong M; Jiang C; Zhao Y; Chen L; Ju Y; Jiang J; Xu Z; Pan J; Li X; Wang K Bioorg Chem; 2024 Jul; 148():107494. PubMed ID: 38797067 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional MnO Wang Q; Qu B; Li J; Liu Y; Dong J; Peng X; Zhang R ACS Appl Mater Interfaces; 2022 Feb; 14(4):4980-4994. PubMed ID: 35050589 [TBL] [Abstract][Full Text] [Related]
18. Chiral Cu Liu Y; Li H; Li S; Zhang X; Xiong J; Jiang F; Liu Y; Jiang P ACS Appl Mater Interfaces; 2021 Dec; 13(51):60933-60944. PubMed ID: 34923825 [TBL] [Abstract][Full Text] [Related]
19. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Wang L; Yin H; Jabed MA; Hetu M; Wang C; Monro S; Zhu X; Kilina S; McFarland SA; Sun W Inorg Chem; 2017 Mar; 56(6):3245-3259. PubMed ID: 28263079 [TBL] [Abstract][Full Text] [Related]
20. Carambola-like Bi Zhao Y; Liu Y; Wang Q; Liu J; Zhang S; Zhang T; Wang D; Wang Y; Jin L; Zhang H J Mater Chem B; 2021 Sep; 9(35):7271-7277. PubMed ID: 34121105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]