These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35006855)

  • 41. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioresorbable Microspheres with Surface-Loaded Nanosilver and Apatite as Dual-Functional Injectable Cell Carriers for Bone Regeneration.
    Wei P; Yuan Z; Cai Q; Mao J; Yang X
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800062. PubMed ID: 29749008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering.
    Bhamidipati M; Sridharan B; Scurto AM; Detamore MS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4892-9. PubMed ID: 24094202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair.
    Li Y; Zhang Z; Zhang Z
    Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.
    Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C
    Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of bone regeneration in implants composed of hollow HA microspheres loaded with transforming growth factor β1 in a rat calvarial defect model.
    Fu H; Rahaman MN; Brown RF; Day DE
    Acta Biomater; 2013 Mar; 9(3):5718-27. PubMed ID: 23168225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration.
    Mao J; Wei P; Yuan Z; Jing W; Cao J; Li G; Guo J; Wang H; Chen D; Cai Q
    J Biomater Sci Polym Ed; 2021 Feb; 32(2):229-247. PubMed ID: 32966753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration.
    Ma C; Jing Y; Sun H; Liu X
    Adv Healthc Mater; 2015 Dec; 4(17):2699-708. PubMed ID: 26462137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.
    Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP
    Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair.
    Ge M; Ge K; Gao F; Yan W; Liu H; Xue L; Jin Y; Ma H; Zhang J
    Int J Nanomedicine; 2018; 13():1707-1721. PubMed ID: 29599615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering.
    Zhang W; Wang XC; Li XY; Zhang LL; Jiang F
    Carbohydr Polym; 2020 May; 236():116043. PubMed ID: 32172857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration.
    Ge YW; Lu JW; Sun ZY; Liu ZQ; Zhou J; Ke QF; Mao YQ; Guo YP; Zhu ZA
    Nanomedicine; 2019 Jun; 18():336-346. PubMed ID: 30419364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect.
    Huang Y; Du Z; Zheng T; Jing W; Liu H; Liu X; Mao J; Zhang X; Cai Q; Chen D; Yang X
    J Biomed Mater Res A; 2021 Dec; 109(12):2580-2596. PubMed ID: 34173709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects.
    Kamali A; Oryan A; Hosseini S; Ghanian MH; Alizadeh M; Baghaban Eslaminejad M; Baharvand H
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():64-75. PubMed ID: 31029357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.