These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
818 related articles for article (PubMed ID: 35006857)
1. Tumor-Targeting H Jung E; Lee J; Lee Y; Seon S; Park M; Song C; Lee D ACS Appl Bio Mater; 2021 May; 4(5):4450-4461. PubMed ID: 35006857 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional MnO Wang Q; Qu B; Li J; Liu Y; Dong J; Peng X; Zhang R ACS Appl Mater Interfaces; 2022 Feb; 14(4):4980-4994. PubMed ID: 35050589 [TBL] [Abstract][Full Text] [Related]
3. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Guo Z; Zhou X; Hou C; Ding Z; Wen C; Zhang LJ; Jiang BP; Shen XC Biomater Sci; 2019 Aug; 7(9):3886-3897. PubMed ID: 31313766 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of Au@MOF core-shell hybrids for enhanced photodynamic/photothermal therapy. Cai X; Zhao Y; Wang L; Hu M; Wu Z; Liu L; Zhu W; Pei R J Mater Chem B; 2021 Sep; 9(33):6646-6657. PubMed ID: 34369551 [TBL] [Abstract][Full Text] [Related]
5. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Chen G; Xiong M; Jiang C; Zhao Y; Chen L; Ju Y; Jiang J; Xu Z; Pan J; Li X; Wang K Bioorg Chem; 2024 Jul; 148():107494. PubMed ID: 38797067 [TBL] [Abstract][Full Text] [Related]
6. Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy. Zhang P; Wu Q; Yang J; Hou M; Zheng B; Xu J; Chai Y; Xiong L; Zhang C Acta Biomater; 2022 Jul; 146():450-464. PubMed ID: 35526739 [TBL] [Abstract][Full Text] [Related]
7. Tumor microenvironment-responsive size-changeable and biodegradable HA-CuS/MnO Jin Z; Wang Y; Han M; Wang L; Lin F; Jia Q; Ren W; Xu J; Yang W; Zhao GA; Sun X; Jing C Colloids Surf B Biointerfaces; 2024 Jun; 238():113921. PubMed ID: 38631280 [TBL] [Abstract][Full Text] [Related]
8. SiO Sun M; Yang D; Fanqi W; Wang Z; Ji H; Liu Z; Gai S; Zhang F; Yang P J Mater Chem B; 2020 Jul; 8(26):5707-5721. PubMed ID: 32510093 [TBL] [Abstract][Full Text] [Related]
9. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. Younis MR; Wang C; An R; Wang S; Younis MA; Li ZQ; Wang Y; Ihsan A; Ye D; Xia XH ACS Nano; 2019 Feb; 13(2):2544-2557. PubMed ID: 30730695 [TBL] [Abstract][Full Text] [Related]
10. Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. Karges J; Díaz-García D; Prashar S; Gómez-Ruiz S; Gasser G ACS Appl Bio Mater; 2021 May; 4(5):4394-4405. PubMed ID: 35006851 [TBL] [Abstract][Full Text] [Related]
11. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Xu W; Qian J; Hou G; Wang Y; Wang J; Sun T; Ji L; Suo A; Yao Y Acta Biomater; 2019 Jan; 83():400-413. PubMed ID: 30465921 [TBL] [Abstract][Full Text] [Related]
12. An "all-in-one" strategy based on the organic molecule DCN-4CQA for effective NIR-fluorescence-imaging-guided dual phototherapy. Li L; Liu Y; Sun T; Zhou T; Bai Y; Liu X; Zhang S; Jia T; Zhao X; Wang Y J Mater Chem B; 2021 Jul; 9(29):5785-5793. PubMed ID: 34190308 [TBL] [Abstract][Full Text] [Related]
13. 1550 nm excitation-responsive upconversion nanoparticles to establish dual-photodynamic therapy against pancreatic tumors. Pham KY; Wang LC; Hsieh CC; Hsu YP; Chang LC; Su WP; Chien YH; Yeh CS J Mater Chem B; 2021 Jan; 9(3):694-709. PubMed ID: 33367451 [TBL] [Abstract][Full Text] [Related]
14. Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy. Li J; Wang T; Jiang F; Hong Z; Su X; Li S; Han S ACS Appl Bio Mater; 2021 May; 4(5):4618-4628. PubMed ID: 35006799 [TBL] [Abstract][Full Text] [Related]
15. Tumor-targeted redox-regulating and antiangiogenic phototherapeutics nanoassemblies for self-boosting phototherapy. Jung E; Kwon S; Song N; Kim N; Jo H; Yang M; Park S; Kim C; Lee D Biomaterials; 2023 Jul; 298():122127. PubMed ID: 37086554 [TBL] [Abstract][Full Text] [Related]
16. Oxygen Self-Supplied Perfluorocarbon-Modified Micelles for Enhanced Cancer Photodynamic Therapy and Ferroptosis. Ren H; Hao M; Liu G; Li J; Jiang Z; Meng W; Zhang Y ACS Appl Bio Mater; 2024 May; 7(5):3306-3315. PubMed ID: 38634490 [TBL] [Abstract][Full Text] [Related]
17. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Taratula O; Schumann C; Duong T; Taylor KL; Taratula O Nanoscale; 2015 Mar; 7(9):3888-902. PubMed ID: 25422147 [TBL] [Abstract][Full Text] [Related]
18. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846 [TBL] [Abstract][Full Text] [Related]
19. Design and construction of IR780- and EGCG-based and mitochondrial targeting nanoparticles and their application in tumor chemo-phototherapy. Bao J; Zhao Y; Xu J; Guo Y J Mater Chem B; 2021 Dec; 9(48):9932-9945. PubMed ID: 34842269 [TBL] [Abstract][Full Text] [Related]
20. Boron-based nanosheets for combined cancer photothermal and photodynamic therapy. Kang Y; Ji X; Li Z; Su Z; Zhang S J Mater Chem B; 2020 Jun; 8(21):4609-4619. PubMed ID: 32373909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]