These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 35006871)
1. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering. Ding H; Hu Y; Cheng Y; Yang H; Gong Y; Liang S; Wei Y; Huang D ACS Appl Bio Mater; 2021 Aug; 4(8):6167-6174. PubMed ID: 35006871 [TBL] [Abstract][Full Text] [Related]
2. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
3. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Wang X; Salick MR; Wang X; Cordie T; Han W; Peng Y; Li Q; Turng LS Biomacromolecules; 2013 Oct; 14(10):3557-69. PubMed ID: 24010580 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical Shish-Kebab Structures Functionalizing Nanofibers for Controlled Drug Release and Improved Antithrombogenicity. Guo M; Wang X; Liu Y; Yu H; Dong J; Cui Z; Bai Z; Li K; Li Q Biomacromolecules; 2022 Mar; 23(3):1337-1349. PubMed ID: 35235295 [TBL] [Abstract][Full Text] [Related]
5. Endothelial Cell Migration on Poly(ε-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils. Guo X; Wang X; Li X; Jiang YC; Han S; Ma L; Guo H; Wang Z; Li Q Biomacromolecules; 2020 Mar; 21(3):1202-1213. PubMed ID: 31895550 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997 [TBL] [Abstract][Full Text] [Related]
7. Sustained release of basic fibroblast growth factor in micro/nanofibrous scaffolds promotes annulus fibrosus regeneration. Tu Z; Han F; Zhu Z; Yu Q; Liu C; Bao Y; Li B; Zhou F Acta Biomater; 2023 Aug; 166():241-253. PubMed ID: 37230436 [TBL] [Abstract][Full Text] [Related]
8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
9. MC3T3 E1 cell response to mineralized nanofiber shish kebab structures. Yu T; Petrovic M; Attia A; Galindo D; Staub MC; Kim S; Li CY; Marcolongo M J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1601-1610. PubMed ID: 33608965 [TBL] [Abstract][Full Text] [Related]
10. Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch. Liu Y; Liu Y; Bai Z; Wang D; Xu Y; Li Q J Tissue Eng Regen Med; 2022 Dec; 16(12):1163-1172. PubMed ID: 36330594 [TBL] [Abstract][Full Text] [Related]
11. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. Chen X; Gleeson SE; Yu T; Khan N; Yucha RW; Marcolongo M; Li CY J Biomed Mater Res A; 2017 Jun; 105(6):1786-1798. PubMed ID: 28198135 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Su Y; Su Q; Liu W; Lim M; Venugopal JR; Mo X; Ramakrishna S; Al-Deyab SS; El-Newehy M Acta Biomater; 2012 Feb; 8(2):763-71. PubMed ID: 22100346 [TBL] [Abstract][Full Text] [Related]
13. Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. Huang C; Yang G; Zhou S; Luo E; Pan J; Bao C; Liu X ACS Biomater Sci Eng; 2020 Oct; 6(10):5758-5770. PubMed ID: 33320572 [TBL] [Abstract][Full Text] [Related]
14. Electrospun poly(ε-caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. Yu T; Gleeson SE; Li CY; Marcolongo M J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1141-1149. PubMed ID: 30261119 [TBL] [Abstract][Full Text] [Related]
15. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
16. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering. Li T; Tian L; Liao S; Ding X; Irvine SA; Ramakrishna S J Mech Behav Biomed Mater; 2019 Oct; 98():48-57. PubMed ID: 31195187 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and Characterization of the Core-Shell Structure of Poly(3-Hydroxybutyrate-4-Hydroxybutyrate) Nanofiber Scaffolds. Guo W; Yang Z; Qin X; Wei Y; Li C; Huang R; Zhou C; Wang H; Jin L; Wang H Biomed Res Int; 2021; 2021():8868431. PubMed ID: 33575351 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
19. Multilayer functional bionic fabricated polycaprolactone based fibrous membranes for osteochondral integrated repair. Hu Y; Yin X; Ding H; Kang M; Liang S; Wei Y; Huang D Colloids Surf B Biointerfaces; 2023 May; 225():113279. PubMed ID: 36989815 [TBL] [Abstract][Full Text] [Related]