BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35006965)

  • 21. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.
    He X; Zhang X; Bai L; Hang R; Huang X; Qin L; Yao X; Tang B
    Biomed Mater; 2016 Aug; 11(4):045008. PubMed ID: 27508428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface Modification Techniques to Enhance Osseointegration of Spinal Implants.
    Possley D; Baker E; Baker K; Khalil JG
    J Am Acad Orthop Surg; 2020 Nov; 28(22):e988-e994. PubMed ID: 32868701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of titanium surface modification techniques and coatings for antibacterial applications.
    Chouirfa H; Bouloussa H; Migonney V; Falentin-Daudré C
    Acta Biomater; 2019 Jan; 83():37-54. PubMed ID: 30541702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration.
    Li S; Yu W; Zhang W; Zhang G; Yu L; Lu E
    Int J Nanomedicine; 2018; 13():3643-3659. PubMed ID: 29983560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fusion peptide engineered "statically-versatile" titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration.
    Chen J; Hu G; Li T; Chen Y; Gao M; Li Q; Hao L; Jia Y; Wang L; Wang Y
    Biomaterials; 2021 Jan; 264():120446. PubMed ID: 33069134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants.
    Mas-Moruno C; Su B; Dalby MJ
    Adv Healthc Mater; 2019 Jan; 8(1):e1801103. PubMed ID: 30468010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured Surface Modification to Bone Implants for Bone Regeneration.
    Wang Q; Huang Y; Qian Z
    J Biomed Nanotechnol; 2018 Apr; 14(4):628-648. PubMed ID: 31352938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile and Versatile Surface Functional Polyetheretherketone with Enhanced Bacteriostasis and Osseointegrative Capability for Implant Application.
    Li N; Bai J; Wang W; Liang X; Zhang W; Li W; Lu L; Xiao L; Xu Y; Wang Z; Zhu C; Zhou J; Geng D
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59731-59746. PubMed ID: 34886671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites.
    Buck E; Li H; Cerruti M
    Macromol Biosci; 2020 Feb; 20(2):e1900271. PubMed ID: 31782906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibacterial surface modification of titanium implants in orthopaedics.
    Orapiriyakul W; Young PS; Damiati L; Tsimbouri PM
    J Tissue Eng; 2018; 9():2041731418789838. PubMed ID: 30083308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study.
    Ren B; Wan Y; Liu C; Wang H; Yu M; Zhang X; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111505. PubMed ID: 33255064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration.
    Gorgin Karaji Z; Jahanmard F; Mirzaei AH; van der Wal B; Amin Yavari S
    Biomed Mater; 2020 Oct; 15(6):065016. PubMed ID: 32640431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of surface topology on the osseointegration of implant materials in trabecular bone.
    Wong M; Eulenberger J; Schenk R; Hunziker E
    J Biomed Mater Res; 1995 Dec; 29(12):1567-75. PubMed ID: 8600147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of TiO
    Awad NK; Edwards SL; Morsi YS
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1401-1412. PubMed ID: 28482507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK.
    Torstrick FB; Lin ASP; Potter D; Safranski DL; Sulchek TA; Gall K; Guldberg RE
    Biomaterials; 2018 Dec; 185():106-116. PubMed ID: 30236838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orchestrating soft tissue integration at the transmucosal region of titanium implants.
    Guo T; Gulati K; Arora H; Han P; Fournier B; Ivanovski S
    Acta Biomater; 2021 Apr; 124():33-49. PubMed ID: 33444803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats.
    Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD
    Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adherent lipopolysaccharide inhibits the osseointegration of orthopedic implants by impairing osteoblast differentiation.
    Bonsignore LA; Anderson JR; Lee Z; Goldberg VM; Greenfield EM
    Bone; 2013 Jan; 52(1):93-101. PubMed ID: 22995462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of chitosan-vancomycin antimicrobial coatings on titanium implants.
    Swanson TE; Cheng X; Friedrich C
    J Biomed Mater Res A; 2011 May; 97(2):167-76. PubMed ID: 21370447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration.
    Zhang W; Wang G; Liu Y; Zhao X; Zou D; Zhu C; Jin Y; Huang Q; Sun J; Liu X; Jiang X; Zreiqat H
    Biomaterials; 2013 Apr; 34(13):3184-95. PubMed ID: 23380352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.