These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 35006998)
21. Effect of Silencing CYP6B6 of Helicoverpa armigera (Lepidoptera: Noctuidae) on Its Growth, Development, and Insecticide Tolerance. Zhao J; Liu N; Ma J; Huang L; Liu X J Econ Entomol; 2016 Dec; 109(6):2506-2516. PubMed ID: 27591286 [TBL] [Abstract][Full Text] [Related]
22. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests. Garbatti Factor B; de Moura Manoel Bento F; Figueira A Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524 [TBL] [Abstract][Full Text] [Related]
23. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Sandal S; Singh S; Bansal G; Kaur R; Mogilicherla K; Pandher S; Roy A; Kaur G; Rathore P; Kalia A Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298113 [TBL] [Abstract][Full Text] [Related]
24. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera. Fu J; Xu S; Lu H; Li F; Li S; Chang L; Heckel DG; Bock R; Zhang J Plant Cell Environ; 2022 Jun; 45(6):1930-1941. PubMed ID: 35312082 [TBL] [Abstract][Full Text] [Related]
25. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. Guo H; Liu XZ; Long GJ; Gong LL; Zhang MQ; Ma YF; Hull JJ; Dewer Y; He M; He P Pest Manag Sci; 2023 Mar; 79(3):1048-1061. PubMed ID: 36325939 [TBL] [Abstract][Full Text] [Related]
26. Delivery of dsRNA for RNAi in insects: an overview and future directions. Yu N; Christiaens O; Liu J; Niu J; Cappelle K; Caccia S; Huvenne H; Smagghe G Insect Sci; 2013 Feb; 20(1):4-14. PubMed ID: 23955821 [TBL] [Abstract][Full Text] [Related]
27. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Lucena-Leandro VS; Abreu EFA; Vidal LA; Torres CR; Junqueira CICVF; Dantas J; Albuquerque ÉVS Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555476 [TBL] [Abstract][Full Text] [Related]
28. Current scenario of RNAi-based hemipteran control. Jain RG; Robinson KE; Asgari S; Mitter N Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867 [TBL] [Abstract][Full Text] [Related]
29. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967 [TBL] [Abstract][Full Text] [Related]
30. RNAi Efficiency through dsRNA Injection Is Enhanced by Knockdown of dsRNA Nucleases in the Fall Webworm, Zhang X; Fan Z; Wang Q; Kong X; Liu F; Fang J; Zhang S; Zhang Z Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682860 [TBL] [Abstract][Full Text] [Related]
31. Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. Howard JD; Beghyn M; Dewulf N; De Vos Y; Philips A; Portwood D; Kilby PM; Oliver D; Maddelein W; Brown S; Dickman MJ J Biol Chem; 2022 Sep; 298(9):102311. PubMed ID: 35921898 [TBL] [Abstract][Full Text] [Related]
32. RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Khalil SMS; Alahmed AM; Munawar K Acta Trop; 2023 Jul; 243():106938. PubMed ID: 37146864 [TBL] [Abstract][Full Text] [Related]
33. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Yan S; Ren BY; Shen J Insect Sci; 2021 Feb; 28(1):21-34. PubMed ID: 32478473 [TBL] [Abstract][Full Text] [Related]
34. Engineered Gut Symbiotic Bacterium-Mediated RNAi for Effective Control of Ding J; Cui C; Wang G; Wei G; Bai L; Li Y; Sun P; Dong L; Liu Z; Yun J; Li F; Li K; He L; Wang S Microbiol Spectr; 2023 Aug; 11(4):e0166623. PubMed ID: 37458601 [No Abstract] [Full Text] [Related]
35. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. Cooper AM; Song H; Yu Z; Biondi M; Bai J; Shi X; Ren Z; Weerasekara SM; Hua DH; Silver K; Zhang J; Zhu KY Pest Manag Sci; 2021 Feb; 77(2):635-645. PubMed ID: 33002336 [TBL] [Abstract][Full Text] [Related]
37. Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Liu F; Wang XD; Zhao YY; Li YJ; Liu YC; Sun J Int J Biol Sci; 2015; 11(1):67-74. PubMed ID: 25552931 [TBL] [Abstract][Full Text] [Related]
38. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. Killiny N; Hajeri S; Tiwari S; Gowda S; Stelinski LL PLoS One; 2014; 9(10):e110536. PubMed ID: 25330026 [TBL] [Abstract][Full Text] [Related]
39. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera. Israni B; Rajam MV Insect Mol Biol; 2017 Apr; 26(2):164-180. PubMed ID: 27883266 [TBL] [Abstract][Full Text] [Related]
40. Strategies for enhancing the efficiency of RNA interference in insects. Silver K; Cooper AM; Zhu KY Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]