These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation. Wu T; Huan X; Zhang H; Wu L; Sui G; Yang X J Colloid Interface Sci; 2023 May; 638():392-402. PubMed ID: 36758252 [TBL] [Abstract][Full Text] [Related]
3. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Orasugh JT; Temane LT; Ray SS Int J Biol Macromol; 2024 Oct; 277(Pt 1):133891. PubMed ID: 39025190 [TBL] [Abstract][Full Text] [Related]
5. Ultrathin, Strong, and Highly Flexible Ti Wan Y; Xiong P; Liu J; Feng F; Xun X; Gama FM; Zhang Q; Yao F; Yang Z; Luo H; Xu Y ACS Nano; 2021 May; 15(5):8439-8449. PubMed ID: 33957047 [TBL] [Abstract][Full Text] [Related]
6. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Li M; Zhang M; Zhao Y; Jiang S; Xu Q; Han F; Zhu J; Liu L; Ge A Carbohydr Polym; 2022 Jun; 286():119306. PubMed ID: 35337514 [TBL] [Abstract][Full Text] [Related]
7. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827 [TBL] [Abstract][Full Text] [Related]
8. An Ultrastrong and Antibacterial Silver Nanowire/Aligned Cellulose Scaffold Composite Film for Electromagnetic Interference Shielding. Zhu M; Yan X; Lei Y; Guo J; Xu Y; Xu H; Dai L; Kong L ACS Appl Mater Interfaces; 2022 Mar; 14(12):14520-14531. PubMed ID: 35306804 [TBL] [Abstract][Full Text] [Related]
9. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. Pang L; Paxton NC; Ren J; Liu F; Zhan H; Woodruff MA; Bo A; Gu Y ACS Appl Mater Interfaces; 2020 Oct; 12(42):47993-48006. PubMed ID: 33044824 [TBL] [Abstract][Full Text] [Related]
10. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. Zhang LQ; Yang SG; Li L; Yang B; Huang HD; Yan DX; Zhong GJ; Xu L; Li ZM ACS Appl Mater Interfaces; 2018 Nov; 10(46):40156-40167. PubMed ID: 30383958 [TBL] [Abstract][Full Text] [Related]
11. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Wang Z; Han X; Han X; Chen Z; Wang S; Pu J Carbohydr Polym; 2021 Feb; 254():117033. PubMed ID: 33357838 [TBL] [Abstract][Full Text] [Related]
12. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. Han G; Ma Z; Zhou B; He C; Wang B; Feng Y; Ma J; Sun L; Liu C J Colloid Interface Sci; 2021 Feb; 583():571-578. PubMed ID: 33038606 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Chen Y; Luo H; Guo H; Liu K; Mei C; Li Y; Duan G; He S; Han J; Zheng J; E S; Jiang S Carbohydr Polym; 2022 Jan; 276():118799. PubMed ID: 34823805 [TBL] [Abstract][Full Text] [Related]
14. Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. He Y; Chen J; Qian Y; Wei Y; Wang C; Ye Z; Liu Y; Chen G Carbohydr Polym; 2022 Dec; 298():120132. PubMed ID: 36241300 [TBL] [Abstract][Full Text] [Related]
15. Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. Chen Y; Zhang L; Mei C; Li Y; Duan G; Agarwal S; Greiner A; Ma C; Jiang S ACS Appl Mater Interfaces; 2020 Aug; 12(31):35513-35522. PubMed ID: 32672439 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Mokhena TC; Sadiku ER; Mochane MJ; Ray SS; John MJ; Mtibe A Carbohydr Polym; 2021 Dec; 273():118507. PubMed ID: 34560938 [TBL] [Abstract][Full Text] [Related]
17. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Mondal S; Ganguly S; Rahaman M; Aldalbahi A; Chaki TK; Khastgir D; Das NCh Phys Chem Chem Phys; 2016 Sep; 18(35):24591-9. PubMed ID: 27539886 [TBL] [Abstract][Full Text] [Related]
18. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Baniasadi H; Madani Z; Ajdary R; Rojas OJ; Seppälä J Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112424. PubMed ID: 34702510 [TBL] [Abstract][Full Text] [Related]
19. Experiment and simulation of flexible CNT/SA/PDMS electromagnetic shielding composite. Pang J; Chen Y; Li J; Gong S; Lei X; Wu C; Zhu Z; Li Z Nanotechnology; 2022 Feb; 33(17):. PubMed ID: 35038684 [TBL] [Abstract][Full Text] [Related]
20. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications. Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]