These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35007036)
41. Microscale Sensor Arrays for the Detection of Dopamine Using PEDOT:PSS Organic Electrochemical Transistors. Li C; He Y; Ingebrandt S; Vu XT Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204939 [TBL] [Abstract][Full Text] [Related]
42. Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Kumar S; Umar M; Saifi A; Kumar S; Augustine S; Srivastava S; Malhotra BD Anal Chim Acta; 2019 May; 1056():135-145. PubMed ID: 30797454 [TBL] [Abstract][Full Text] [Related]
43. Monolayer, open-mesh, pristine PEDOT:PSS-based conformal brain implants for fully MRI-compatible neural interfaces. Hong JH; Lee JY; Dutta A; Yoon SL; Cho YU; Kim K; Kang K; Kim HW; Kim DH; Park J; Cho M; Kim K; An JB; Lee HL; Hwang D; Kim HJ; Ha Y; Lee HY; Cheng H; Yu KJ Biosens Bioelectron; 2024 Sep; 260():116446. PubMed ID: 38820722 [TBL] [Abstract][Full Text] [Related]
44. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Wang HS; Li TH; Jia WL; Xu HY Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509 [TBL] [Abstract][Full Text] [Related]
45. Tellurium-nanowire-coated glassy carbon electrodes for selective and sensitive detection of dopamine. Tsai HY; Lin ZH; Chang HT Biosens Bioelectron; 2012 May; 35(1):479-483. PubMed ID: 22483356 [TBL] [Abstract][Full Text] [Related]
46. Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Atta NF; Galal A; Ahmed RA Bioelectrochemistry; 2011 Feb; 80(2):132-41. PubMed ID: 20709605 [TBL] [Abstract][Full Text] [Related]
47. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid. Zhao Z; Zhang M; Chen X; Li Y; Wang J Sensors (Basel); 2015 Jul; 15(7):16614-31. PubMed ID: 26184200 [TBL] [Abstract][Full Text] [Related]
49. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Proença MB; Dombrowski PA; Da Cunha C; Fischer L; Ferraz AC; Lima MM Neuropharmacology; 2014 Jan; 76 Pt A():118-26. PubMed ID: 24012539 [TBL] [Abstract][Full Text] [Related]
50. A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation. Lin CY; Balamurugan A; Lai YH; Ho KC Talanta; 2010 Oct; 82(5):1905-11. PubMed ID: 20875594 [TBL] [Abstract][Full Text] [Related]
51. Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum. Ashmawy NH; Almehizia AA; Youssef TA; El-Galil E Amr A; Al-Omar MA; Kamel AH Molecules; 2019 Apr; 24(8):. PubMed ID: 31003551 [TBL] [Abstract][Full Text] [Related]
52. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Huang J; Liu Y; Hou H; You T Biosens Bioelectron; 2008 Dec; 24(4):632-7. PubMed ID: 18640024 [TBL] [Abstract][Full Text] [Related]
53. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
54. High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid. Lin M; Huang H; Liu Y; Liang C; Fei S; Chen X; Ni C Nanotechnology; 2013 Feb; 24(6):065501. PubMed ID: 23324449 [TBL] [Abstract][Full Text] [Related]
55. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Savk A; Özdil B; Demirkan B; Nas MS; Calimli MH; Alma MH; Inamuddin ; Asiri AM; Şen F Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():248-254. PubMed ID: 30889697 [TBL] [Abstract][Full Text] [Related]
56. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938 [TBL] [Abstract][Full Text] [Related]
57. Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Yu S; Luo C; Wang L; Peng H; Zhu Z Analyst; 2013 Feb; 138(4):1149-55. PubMed ID: 23282767 [TBL] [Abstract][Full Text] [Related]
58. Synthesis of MOF525/PEDOT Composites as Microelectrodes for Electrochemical Sensing of Dopamine. Chen SS; Han PC; Kuok WK; Lu JY; Gu Y; Ahamad T; Alshehri SM; Ayalew H; Yu HH; Wu KC Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878082 [TBL] [Abstract][Full Text] [Related]