BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35007172)

  • 1. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity.
    Chetot T; Benoit E; Lambert V; Lattard V
    Biochem Cell Biol; 2022 Apr; 100(2):152-161. PubMed ID: 35007172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J
    Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.
    Tie JK; Jin DY; Stafford DW
    J Biol Chem; 2014 Mar; 289(13):9396-407. PubMed ID: 24532791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VKORC1 and the vitamin K cycle.
    Garcia AA; Reitsma PH
    Vitam Horm; 2008; 78():23-33. PubMed ID: 18374188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo.
    Lacombe J; Rishavy MA; Berkner KL; Ferron M
    JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation.
    Rishavy MA; Hallgren KW; Wilson LA; Usubalieva A; Runge KW; Berkner KL
    J Biol Chem; 2013 Nov; 288(44):31556-66. PubMed ID: 23918929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase.
    Rishavy MA; Hallgren KW; Wilson L; Singh S; Runge KW; Berkner KL
    Blood; 2018 Jun; 131(25):2826-2835. PubMed ID: 29592891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay.
    Fregin A; Czogalla KJ; Gansler J; Rost S; Taverna M; Watzka M; Bevans CG; Müller CR; Oldenburg J
    J Thromb Haemost; 2013 May; 11(5):872-80. PubMed ID: 23452238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Resistance to acenocoumarol revealing a missense mutation of the vitamin K epoxyde reductase VKORC1: a case report].
    Mboup MC; Dia K; Ba DM; Fall PD
    Ann Cardiol Angeiol (Paris); 2015 Feb; 64(1):59-61. PubMed ID: 24095214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.
    Bevans CG; Krettler C; Reinhart C; Watzka M; Oldenburg J
    Nutrients; 2015 Jul; 7(8):6224-49. PubMed ID: 26230708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avian interspecific differences in VKOR activity and inhibition: Insights from amino acid sequence and mRNA expression ratio of VKORC1 and VKORC1L1.
    Nakayama SMM; Morita A; Ikenaka Y; Kawai YK; Watanabe KP; Ishii C; Mizukawa H; Yohannes YB; Saito K; Watanabe Y; Ito M; Ohsawa N; Ishizuka M
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108635. PubMed ID: 31639498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VKORC1L1, An Enzyme Mediating the Effect of Vitamin K in Liver and Extrahepatic Tissues.
    Lacombe J; Ferron M
    Nutrients; 2018 Jul; 10(8):. PubMed ID: 30050002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VKCFD2 - from clinical phenotype to molecular mechanism.
    Czogalla KJ; Watzka M; Oldenburg J
    Hamostaseologie; 2016 Nov; 36(Suppl. 2):S13-S20. PubMed ID: 27824210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Vitamin K epoxide reductase: Fresh blood for oral anticoagulant therapies].
    Loriot MA; Beaune P
    Rev Med Interne; 2006 Dec; 27(12):979-82. PubMed ID: 17070618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites.
    Czogalla KJ; Liphardt K; Höning K; Hornung V; Biswas A; Watzka M; Oldenburg J
    Blood Adv; 2018 Mar; 2(6):691-702. PubMed ID: 29581108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation.
    Ke N; Landeta C; Wang X; Boyd D; Eser M; Beckwith J
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Modeling Insights into Human VKORC1 Phenotypes.
    Czogalla KJ; Watzka M; Oldenburg J
    Nutrients; 2015 Aug; 7(8):6837-51. PubMed ID: 26287237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.