BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35007278)

  • 1. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent.
    Thompson KA; Peichel CL; Rennison DJ; McGee MD; Albert AYK; Vines TH; Greenwood AK; Wark AR; Brandvain Y; Schumer M; Schluter D
    PLoS Biol; 2022 Jan; 20(1):e3001469. PubMed ID: 35007278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection.
    Thompson KA; Schluter D
    Proc Biol Sci; 2022 May; 289(1974):20220422. PubMed ID: 35506223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback.
    Chhina AK; Thompson KA; Schluter D
    Evol Lett; 2022 Feb; 6(1):34-45. PubMed ID: 35127136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A test of hybrid growth disadvantage in wild, free-ranging species pairs of threespine stickleback (Gasterosteus aculeatus) and its implications for ecological speciation.
    Taylor EB; Gerlinsky C; Farrell N; Gow JL
    Evolution; 2012 Jan; 66(1):240-51. PubMed ID: 22220878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local heterozygosity-fitness correlations with global positive effects on fitness in threespine stickleback.
    Lieutenant-Gosselin M; Bernatchez L
    Evolution; 2006 Aug; 60(8):1658-68. PubMed ID: 17017066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygosity and asymmetry: Ectodysplasin as a form of genetic stress in marine threespine stickleback.
    Morris MRJ; Kaufman R; Rogers SM
    Evolution; 2019 Feb; 73(2):378-389. PubMed ID: 30597556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing for mating isolation between ecotypes: laboratory experiments with lake, stream and hybrid stickleback.
    Raeymaekers JA; Boisjoly M; Delaire L; Berner D; Räsänen K; Hendry AP
    J Evol Biol; 2010 Dec; 23(12):2694-708. PubMed ID: 20939859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds.
    Hudson CM; Cuenca Cambronero M; Moosmann M; Narwani A; Spaak P; Seehausen O; Matthews B
    J Evol Biol; 2023 Aug; 36(8):1166-1184. PubMed ID: 37394735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of ecological divergence during speciation.
    Arnegard ME; McGee MD; Matthews B; Marchinko KB; Conte GL; Kabir S; Bedford N; Bergek S; Chan YF; Jones FC; Kingsley DM; Peichel CL; Schluter D
    Nature; 2014 Jul; 511(7509):307-11. PubMed ID: 24909991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks.
    Gow JL; Peichel CL; Taylor EB
    J Evol Biol; 2007 Nov; 20(6):2173-80. PubMed ID: 17887972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
    Hohenlohe PA; Bassham S; Etter PD; Stiffler N; Johnson EA; Cresko WA
    PLoS Genet; 2010 Feb; 6(2):e1000862. PubMed ID: 20195501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Admixture mapping of male nuptial colour and body shape in a recently formed hybrid population of threespine stickleback.
    Malek TB; Boughman JW; Dworkin I; Peichel CL
    Mol Ecol; 2012 Nov; 21(21):5265-79. PubMed ID: 22681397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection, Linkage, and Population Structure Interact To Shape Genetic Variation Among Threespine Stickleback Genomes.
    Nelson TC; Crandall JG; Ituarte CM; Catchen JM; Cresko WA
    Genetics; 2019 Aug; 212(4):1367-1382. PubMed ID: 31213503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback.
    Bassham S; Catchen J; Lescak E; von Hippel FA; Cresko WA
    Genetics; 2018 Jul; 209(3):921-939. PubMed ID: 29794240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural selection on a major armor gene in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Science; 2008 Oct; 322(5899):255-7. PubMed ID: 18755942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microhabitat contributes to microgeographic divergence in threespine stickleback.
    Maciejewski MF; Jiang C; Stuart YE; Bolnick DI
    Evolution; 2020 Apr; 74(4):749-763. PubMed ID: 32058582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cline coupling and uncoupling in a stickleback hybrid zone.
    Vines TH; Dalziel AC; Albert AY; Veen T; Schulte PM; Schluter D
    Evolution; 2016 May; 70(5):1023-38. PubMed ID: 27061719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and assessment of colour patterns in stream-resident and anadromous male threespine stickleback Gasterosteus aculeatus from three regions.
    Stuckert AMM; Drury S; Anderson CM; Bowling TBT; Mckinnon JS
    J Fish Biol; 2019 Mar; 94(3):520-525. PubMed ID: 30693501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High levels of fluctuating asymmetry in isolated stickleback populations.
    Trokovic N; Herczeg G; Ghani NI; Shikano T; Merilä J
    BMC Evol Biol; 2012 Jul; 12():115. PubMed ID: 22788717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.