These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35007287)

  • 1. Self-organization of collective escape in pigeon flocks.
    Papadopoulou M; Hildenbrandt H; Sankey DWE; Portugal SJ; Hemelrijk CK
    PLoS Comput Biol; 2022 Jan; 18(1):e1009772. PubMed ID: 35007287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of splits and collective turns in pigeon flocks under predation.
    Papadopoulou M; Hildenbrandt H; Sankey DWE; Portugal SJ; Hemelrijk CK
    R Soc Open Sci; 2022 Feb; 9(2):211898. PubMed ID: 35223068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic falcon induces similar collective escape responses in different bird species.
    Storms RF; Carere C; Musters R; Hulst R; Verhulst S; Hemelrijk CK
    J R Soc Interface; 2024 May; 21(214):20230737. PubMed ID: 38689546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex patterns of collective escape in starling flocks under predation.
    Storms RF; Carere C; Zoratto F; Hemelrijk CK
    Behav Ecol Sociobiol; 2019; 73(1):10. PubMed ID: 30930523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of "selfish herd" dynamics in bird flocks under threat.
    Sankey DWE; Storms RF; Musters RJ; Russell TW; Hemelrijk CK; Portugal SJ
    Curr Biol; 2021 Jul; 31(14):3192-3198.e7. PubMed ID: 34089647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple preferred escape trajectories are explained by a geometric model incorporating prey's turn and predator attack endpoint.
    Kawabata Y; Akada H; Shimatani KI; Nishihara GN; Kimura H; Nishiumi N; Domenici P
    Elife; 2023 Feb; 12():. PubMed ID: 36790147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.
    Dieck Kattas G; Xu XK; Small M
    PLoS Comput Biol; 2012; 8(3):e1002449. PubMed ID: 22479176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of robo-pigeon in ethological studies of bird flocks.
    Wang H; Wu J; Fang K; Cai L; Wang LS; Dai ZD
    J Integr Neurosci; 2020 Sep; 19(3):443-448. PubMed ID: 33070523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochasticity may generate coherent motion in bird flocks.
    Reynolds AM
    Phys Biol; 2023 Feb; 20(2):. PubMed ID: 36758247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction rules underlying group decisions in homing pigeons.
    Pettit B; Perna A; Biro D; Sumpter DJ
    J R Soc Interface; 2013 Dec; 10(89):20130529. PubMed ID: 24068173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fleeing to refuge: Escape decisions in the race for life.
    Cooper WE
    J Theor Biol; 2016 Oct; 406():129-36. PubMed ID: 27343624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittence and connectivity of interactions in pigeon flock flights.
    Chen D; Liu X; Xu B; Zhang HT
    Sci Rep; 2017 Sep; 7(1):10452. PubMed ID: 28874738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When flocking is costly: reduced cluster-flock density over long-duration flight in pigeons.
    Sankey DWE; Portugal SJ
    Naturwissenschaften; 2019 Jul; 106(7-8):47. PubMed ID: 31309338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning.
    Chen D; Xu B; Zhu T; Zhou T; Zhang HT
    Phys Rev E; 2017 Aug; 96(2-1):022411. PubMed ID: 28950513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of the scale-invariant proportion in a flock from the metric-topological interaction.
    Niizato T; Murakami H; Gunji YP
    Biosystems; 2014 May; 119():62-8. PubMed ID: 24686118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated Behaviour in Pigeon Flocks.
    Yomosa M; Mizuguchi T; Vásárhelyi G; Nagy M
    PLoS One; 2015; 10(10):e0140558. PubMed ID: 26485662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated escape system: identifying prey's kinematic and behavioral features critical for predator evasion.
    Sunami N; Kimura H; Ito H; Hashimoto K; Sato Y; Tachibana S; Hidaka M; Miyama K; Watanabe H; Kawabata Y
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38690629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Red Tooth Hypothesis: A computational model of predator-prey relations, protean escape behavior and sexual reproduction.
    French RM
    J Theor Biol; 2010 Jan; 262(1):165-76. PubMed ID: 19766658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How moths escape bats: predicting outcomes of predator-prey interactions.
    Corcoran AJ; Conner WE
    J Exp Biol; 2016 Sep; 219(Pt 17):2704-15. PubMed ID: 27340205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective Decision-Making in Homing Pigeons: Larger Flocks Take Longer to Decide but Do Not Make Better Decisions.
    Santos CD; Przybyzin S; Wikelski M; Dechmann DK
    PLoS One; 2016; 11(2):e0147497. PubMed ID: 26863416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.