BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35007297)

  • 1. Epstein-Barr Virus BGLF2 commandeers RISC to interfere with cellular miRNA function.
    Campbell AM; De La Cruz-Herrera CF; Marcon E; Greenblatt J; Frappier L
    PLoS Pathog; 2022 Jan; 18(1):e1010235. PubMed ID: 35007297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of JAK-STAT Signaling by Epstein-Barr Virus Tegument Protein BGLF2 through Recruitment of SHP1 Phosphatase and Promotion of STAT2 Degradation.
    Jangra S; Bharti A; Lui WY; Chaudhary V; Botelho MG; Yuen KS; Jin DY
    J Virol; 2021 Sep; 95(20):e0102721. PubMed ID: 34319780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer.
    Mansouri S; Pan Q; Blencowe BJ; Claycomb JM; Frappier L
    J Virol; 2014 Oct; 88(19):11166-77. PubMed ID: 25031339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation.
    Chen T; Wang Y; Xu Z; Zou X; Wang P; Ou X; Li Y; Peng T; Chen D; Li M; Cai M
    FASEB J; 2019 Sep; 33(9):10563-10576. PubMed ID: 31337264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Promotes EBV Reactivation through Activation of the p38 Mitogen-Activated Protein Kinase.
    Liu X; Cohen JI
    J Virol; 2016 Jan; 90(2):1129-38. PubMed ID: 26559845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Suppresses Type I Interferon Signaling To Promote EBV Reactivation.
    Liu X; Sadaoka T; Krogmann T; Cohen JI
    J Virol; 2020 May; 94(11):. PubMed ID: 32213613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epstein-Barr virus tegument protein BGLF2 in exosomes released from virus-producing cells facilitates de novo infection.
    Sato Y; Yaguchi M; Okuno Y; Ishimaru H; Sagou K; Ozaki S; Suzuki T; Inagaki T; Umeda M; Watanabe T; Fujimuro M; Murata T; Kimura H
    Cell Commun Signal; 2022 Jun; 20(1):95. PubMed ID: 35729616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epstein-Barr Virus Infection of Cell Lines Derived from Diffuse Large B-Cell Lymphomas Alters MicroRNA Loading of the Ago2 Complex.
    Ayoubian H; Ludwig N; Fehlmann T; Menegatti J; Gröger L; Anastasiadou E; Trivedi P; Keller A; Meese E; Grässer FA
    J Virol; 2019 Feb; 93(3):. PubMed ID: 30429351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon
    Konishi N; Narita Y; Hijioka F; Masud HMAA; Sato Y; Kimura H; Murata T
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1.
    Bentz GL; Moss CR; Whitehurst CB; Moody CA; Pagano JS
    J Virol; 2015 Aug; 89(15):7465-77. PubMed ID: 25948750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function.
    Li R; Wang L; Liao G; Guzzo CM; Matunis MJ; Zhu H; Hayward SD
    J Virol; 2012 May; 86(10):5412-21. PubMed ID: 22398289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Epstein-Barr virus miR-BHRF1-1 targets RNF4 during productive infection to promote the accumulation of SUMO conjugates and the release of infectious virus.
    Li J; Callegari S; Masucci MG
    PLoS Pathog; 2017 Apr; 13(4):e1006338. PubMed ID: 28414785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epstein-Barr virus encoded microRNAs target SUMO-regulated cellular functions.
    Callegari S; Gastaldello S; Faridani OR; Masucci MG
    FEBS J; 2014 Nov; 281(21):4935-50. PubMed ID: 25205475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses.
    De La Cruz-Herrera CF; Shire K; Siddiqi UZ; Frappier L
    PLoS Pathog; 2018 Jul; 14(7):e1007176. PubMed ID: 29979787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of herpesvirus proteins that contribute to G1/S arrest.
    Paladino P; Marcon E; Greenblatt J; Frappier L
    J Virol; 2014 Apr; 88(8):4480-92. PubMed ID: 24501404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression.
    Zhang K; Lv DW; Li R
    Virology; 2020 Jan; 540():75-87. PubMed ID: 31743858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation.
    Siddiqi UZ; Vaidya AS; Li X; Marcon E; Tsao SW; Greenblatt J; Frappier L
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Characterization of the Epstein-Barr Virus
    Chen T; Zou X; Xu Z; Wang Y; Wang P; Peng H; Liu D; Lin J; Luo R; Wang Y; Chen Q; Chen D; Cai M; Li M
    Iran J Biotechnol; 2018 May; 16(2):e1610. PubMed ID: 30805386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion.
    Pegtel DM; van de Garde MD; Middeldorp JM
    Biochim Biophys Acta; 2011; 1809(11-12):715-21. PubMed ID: 21855666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs of Epstein-Barr Virus Attenuate T-Cell-Mediated Immune Control
    Murer A; Rühl J; Zbinden A; Capaul R; Hammerschmidt W; Chijioke O; Münz C
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.